Knapsack problems with special neighbor constraints on directed co-graphs

Steffen Goebbels ¹, Frank Gurski ², Dominique Komander ²

¹Niederrhein University of Applied Sciences Faculty of Electrical Engineering and Computer Science, D-47805 Krefeld ²Heinrich Heine University Institute of Computer Science, D-40225 Düsseldorf

OR 2021

HEINRICH HEINE UNIVERSITÄT DÜSSELDOR

- The knapsack problem, directed graphs and graph constraints
- Directed co-graph constraints
 - Uniform all-neighbors problem on directed co-graphs
 - General one-neighbor problem on directed co-graphs
- Problems on msp-digraphs and directed trees

hum Chainor

HEINRICH HEINE UNIVERSITÄT DÜSSELDORI Hochschule Niederrhein University of Applied Sciences

OR 2021: Knapsack under graph constraints. -1-

The knapsack problem (KP)

• A set $A = \{a_1, \ldots, a_n\}$ of *n* items is given.

• Every item a_j has a size s_j and a profit $p_j \in \mathbb{N}_0 := \{0, 1, \dots\}$.

The task is to choose a subset A' of A, such that the profit

$$p(A') := \sum_{a_j \in A'} p_j$$

is maximized subject to

$$s(A') := \sum_{a_j \in A'} s_j \leq c,$$

where $c \in \mathbb{N}_0$ is a given capacity. With dynamic programming, NP-hard KP can be solved in $\mathcal{O}(nc)$ and in $\mathcal{O}(nP)$ time,

$$P:=\sum_{j=1}^n p_j \leq n \cdot \max_{1 \leq j \leq n} p_j.$$

OR 2021: Knapsack under graph constraints. -2-

HEINRICH HEINE UNIVERSITÄT DÜSSELDORI

A **directed graph** or **digraph** is a pair G = (A, E), where A is a finite set of **vertices** (the items of KP) and

$$E \subseteq \{(u, v) \mid u, v \in A, \ u \neq v\}$$

is a finite set of ordered pairs of distinct vertices called **arcs** or **directed edges**.

Chains

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF Hochschule Niederrhein University of Applied Sciences

OR 2021: Knapsack under graph constraints. -3-

Directed graphs (2)

For a vertex $v \in A$, the sets

 $N_{G}^{+}(v) = \{u \in A \mid (v, u) \in E\} \text{ and } N_{G}^{-}(v) = \{u \in A \mid (u, v) \in E\}$

are called the set of all successors and the set of all predecessors of v in G, respectively.

A vertex v is called a **sink** iff $N_G^+(v) = \emptyset$. It is called a **source** iff $N_G^-(v) = \emptyset$.

OR 2021: Knapsack under graph constraints. -4-

University of Applied Science

Directed graph constraints

One-neighbor constraint¹: An item v ∈ A can be chosen into A' ⊆ A only if at least one of its successors in N⁺_G(v) is chosen, i.e.,

$$(v \in A' \land N_G^+(v) \neq \emptyset) \Rightarrow N_G^+(v) \cap A' \neq \emptyset.$$

• All-neighbors constraint: An item $v \in A$ can be chosen into $A' \subseteq A$ only if all its successors in $N_G^+(v)$ are chosen, i.e.,

$$v \in A' \Rightarrow N_G^+(v) \subseteq A'.$$

one-neighbor constraint

all-neighbors constraint

¹Borradaile, G., Heeringa, B., Wilfong, G.: The 1-neighbour knapsack problem. In: Proc. IWOCA, LNCS, vol. 7056, pp. 71–84 (2011)

OR 2021: Knapsack under graph constraints. -5-

HEINRICH HEINE

Time complexity of knapsack problems with neighbor constraints on graphs

Known results:²

	graph	one-neighbor	all-neighbors
uniform, i.e.	undirected ³	linear	$\mathcal{O}(n \cdot c) \subseteq \mathcal{O}(n^2)$
$s_j = p_j = 1$	directed	strongly NP-hard	strongly NP-hard
general	undirected	APX-hard	PFTAS
	directed	strongly NP-hard	strongly NP-hard

 ²Borradaile, G., Heeringa, B., Wilfong, G.: The knapsack problem with neighbour constraints. Journal of Discrete Algorithms 16, 224–235 (2012)
 ³Undirected edges can be interpreted as opposite edges in a directed graph.

Chain

HEINRICH HEINI UNIVERSITÄT DÜSSELDOR Hochschule Niederrhein University of Applied Sciences

OR 2021: Knapsack under graph constraints. -6-

- The knapsack problem, directed graphs and graph constraints
- Directed co-graph constraints
 - Uniform all-neighbors problem on directed co-graphs
 - General one-neighbor problem on directed co-graphs
- Problems on msp-digraphs and directed trees

hier Chainve

HEINRICH HEINE UNIVERSITÄT DÜSSELDORI Hochschule Niederrhein University of Applied Sciences

OR 2021: Knapsack under graph constraints. -7-

Directed co-graphs

The class of **directed co-graphs** is recursively defined as follows.

- (i) Every digraph on a single vertex ({v}, ∅) is a directed co-graph.
- (ii) If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are vertex-disjoint directed co-graphs, then directed co-graphs are
 - **1** the **disjoint union** $G_1 \oplus G_2$ with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$,
 - **2** the order composition $G_1 \oslash G_2$, defined by their disjoint union plus all possible edges only directed from V_1 to V_2 , and
 - 3 the series composition $G_1 \otimes G_2$, defined by their disjoint union plus all possible edges between V_1 and V_2 in both directions.

· hjein haining

HEINRICH HEINE UNIVERSITÄT DÜSSELDOR University of Applied Sciences

OR 2021: Knapsack under graph constraints. -8-

Directed co-graphs (2)

- Every expression X using the operations ⊕, ⊘, and ⊗ is called a di-co-expression and digraph(X) is the represented graph with |X| vertices.
- The expression defines the di-co-tree T, the leaves are the vertices of digraph(X) and the inner nodes are the operations.
- For a subtree of *T* rooted at *u*, let *X*(*u*) be the corresponding sub-expression of *X*.

Example: $X = (v_1 \oplus v_3) \oslash (v_2 \otimes v_4)$ defines this digraph(X):

OR 2021: Knapsack under graph constraints. -9-

Time complexity of knapsack problems with neighbor constraints on directed co-graphs

	one-neighbor	all-neighbors	
uniform	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$	
general	$\mathcal{O}(nP^2+n^2)$	$\mathcal{O}(n(P+1)\max\{n, P+1\})$	

haven hains

HEINRICH HEINE

Hochschule Niederrhein University of Applied Sciences

OR 2021: Knapsack under graph constraints. -10-

- The knapsack problem, directed graphs and graph constraints
- Directed co-graph constraints
 - Uniform all-neighbors problem on directed co-graphs
 - General one-neighbor problem on directed co-graphs
- Problems on msp-digraphs and directed trees

hum Chainve

HEINRICH HEINE UNIVERSITÄT DÜSSELDOR Iochschule Niederrhein

OR 2021: Knapsack under graph constraints. -11-

Uniform all-neighbors problem on directed co-graphs

For every vertex u of T and integer 0 we computeF(X(u), p) := 0

if $p = 0 \lor p > \min\{|X(u)|, c\}$ then if p = 0 then F(X(u), p) := 1

else if |X(u)| = 1 then if p = 1 then F(X(u), p) := 1 F(X(u), p) :=

- $\begin{cases} 1: & \text{a feasible solution} \\ & \text{with profit } p \text{ exists} \\ & \text{in digraph}(X(u)) \\ 0: & \text{otherwise.} \end{cases}$

else if $X(u) = L \oplus R$ then for $p' := \max\{0, p - |R|\}; p' \le \min\{p, |L|\} \land F(X(u), p) = 0; p' := p' + 1$ do if $F(L, p') = 1 \land F(R, p - p') = 1$ then F(X(u), p) := 1;

else if $X(u) = L \oslash R$ then if $|R| \ge p$ then if F(R, p) = 1 then F(X(u), p) := 1else if F(L, p - |R|) = 1 then F(X(u), p) := 1

else if $X = L \otimes R$ then if p = |X(u)| then F(X(u), p) := 1hainver

OR 2021: Knapsack under graph constraints. -12-

- The knapsack problem, directed graphs and graph constraints
- Directed co-graph constraints
 - Uniform all-neighbors problem on directed co-graphs
 - General one-neighbor problem on directed co-graphs
- Problems on msp-digraphs and directed trees

hein Chainve

HEINRICH HEINE UNIVERSITÄT DÜSSELDORI Ochschule Niederrhein University of Applied Sciences

OR 2021: Knapsack under graph constraints. -13-

General one-neighbor problem on directed co-graphs

Let F(X, p, k) be the minimum size of a solution fulfilling the one-neighbor constraint with profit exactly p in digraph(X) that

- contains a sink if k = 1
- and does not possess any sinks if k = 0.

We set F(X, p, k) to ∞ , whenever there is no such solution.

The flag k is required for considering $X = L \oslash R$: If a non-empty solution has all vertices in digraph(L) then it cannot have a sink because of the \oslash -operation and the neighbor condition.

Chains

HEINRICH HEINE

Hochschule Niederrhein University of Applied Sciences

OR 2021: Knapsack under graph constraints. -14-

General one-neighbor problem (2)

Items are allowed to have zero profits. Non-empty zero profit solutions help to fulfill the neighbor constraint. Let $\tilde{F}(X, p, k)$ be the minimum size of a **non-empty** solution fulfilling the one-neighbor constraint with profit exactly p in digraph(X) that contains a sink for k = 1 and does not contain a sink for k = 0. If there is no such solution, then $\tilde{F}(X, p, k) := \infty$. Thus

$$F(X, p, k) := \left\{ egin{array}{cc} ilde{F}(X, p, k), & ext{if } p > 0 \lor k = 1, \ 0, & ext{else.} \end{array}
ight.$$

hein Chains

HEINRICH HEINE UNIVERSITÄT DÜSSELDOR Hochschule Niederrhein University of Applied Sciences

OR 2021: Knapsack under graph constraints. -15-

- The knapsack problem, directed graphs and graph constraints
- Directed co-graph constraints
 - Uniform all-neighbors problem on directed co-graphs
 - General one-neighbor problem on directed co-graphs
- Problems on msp-digraphs and directed trees

hein hainve

HEINRICH HEINE UNIVERSITÄT DÜSSELDORI Hochschule Niederrhein University of Applied Sciences

OR 2021: Knapsack under graph constraints. -16-

Minimal series-parallel digraphs (msp-digraphs)

Minimal series-parallel digraphs are recursively defined:

- (i) Every digraph on a single vertex $(\{v\}, \emptyset)$ is an msp-digraph.
- (ii) If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are vertex-disjoint msp-digraphs, then msp-digraphs are
 - 1 the parallel composition $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$,
 - 2 the series composition

 $G_1 \times G_2 = (V_1 \cup V_2, E_1 \cup E_2 \cup (O_1 \times I_2))$, where O_1 is the set of sinks in G_1 and I_2 is the set of sources in G_2 .

Example:

 v_1

 $\left((\{v_1\},\emptyset)\times\left(\left[(\{v_2\},\emptyset)\times\left((\{v_3\},\emptyset)\times(\{v_4\},\emptyset)\right)\right]\cup(\{v_5\},\emptyset)\right)\right)\times\left(\{v_6\},\emptyset\right)\times\left(\{v_6\},\emptyset\right)\right)$

HEINRICH HEIN UNIVERSITÄT DÜSSELDOI Hochschule Niederrhein University of Applied Sciences

OR 2021: Knapsack under graph constraints. -17-

Time complexity of knapsack problems with neighbor constraints on msp-digraphs

	one-neighbor	all-neighbors
uniform	$\mathcal{O}(n^3)$	$O(n^3)$
general	$\mathcal{O}(nP^2+n^2)$	$\mathcal{O}(n(P+1)\max\{n, P+1\})$

hein Chaino

HEINRICH HEINE

Hochschule Niederrhein University of Applied Sciences

OR 2021: Knapsack under graph constraints. -18-

Time complexity of knapsack problems with neighbor constraints on trees

A **directed tree** is a directed graph for which the underlying undirected graph is a tree. In directed trees, opposite edges are allowed.

	graph	one-neighbor	all-neighbors
uniform	undirected	linear ⁴	$\mathcal{O}(1)$
	directed	$\mathcal{O}(n^3)$	$\mathcal{O}\left(n^{3}\right)$
general	undirected	NP-hard	$\mathcal{O}(n)$
	directed	NP-hard	NP-hard
		$\mathcal{O}(nP^2+n)$	$\mathcal{O}(n(P+1)(P+n))$

⁴Borradaile, G., Heeringa, B., Wilfong, G.: The knapsack problem with neighbour constraints. Journal of Discrete Algorithms 16, 224–235 (2012)

Chains

HEINRICH HEIN

Hochschule Niederrhein University of Applied Sciences

OR 2021: Knapsack under graph constraints. -19-

Questions?

?

· heiner haining

HEINRICH HEINE

Hochschule Niederrhein University of Applied Sciences

OR 2021: Knapsack under graph constraints. -20-

Backup: Fully Polynomial Time Approximation Scheme (FPTAS)

- If we exclude zero profits, the one-neighbor and all-neighbors problems become *subset selection problems*.
- Thus, shown pseudo-polynomial algorithms imply a FPTAS⁵.

⁵Pruhs, K., Woeginger, G.: Approximation schemes for a class of subset selection problems. Theoretical Computer Science 382(2), 151–156 (2007)

Chains

HEINRICH HEINE

Hochschule Niederrhein

OR 2021: Knapsack under graph constraints. -21-

Backup: General one-neighbor problem (3)

 $\tilde{F}(X(u), p, k) := \infty$ if |X(u)| = 1 then let $a_i \in V$ be the only vertex. if $k = 1 \land p = p_i$ then $\tilde{F}(X(u), p, k) := s_i$ else if $X(u) = L \oplus R$ then \triangleright Consider empty and non-empty solutions with zero profit in R or L $\tilde{F}(X(u), p, k) := \tilde{F}(L, p, k)$ if $\tilde{F}(X(u), p, k) > \tilde{F}(R, p, k)$ then $\tilde{F}(X(u), p, k) := \tilde{F}(R, p, k)$ \triangleright Consider solutions with positive profit in L and R for p' = 1; p' < p; p' := p' + 1 do if k = 0 then $S := \tilde{F}(L, p', 0) + \tilde{F}(R, p - p', 0)$ if $\tilde{F}(X(u), p, k) > S$ then $\tilde{F}(X(u), p, k) := S$ else $S_1 := \tilde{F}(L, p', 1) + \tilde{F}(R, p - p', 0), S_2 := \tilde{F}(L, p', 0) + \tilde{F}(R, p - p', 1)$ $S_3 := \tilde{F}(L, p', 1) + \tilde{F}(R, p - p', 1)$ for i = 1; $i \le 3$; i := i + 1 do if $\tilde{F}(X(u), p, k) > S$; then $\tilde{F}(X(u), p, k) := S$; else if $X(u) = L \oslash R$ then if k = 0 then $\tilde{F}(X(u), p, k) := \tilde{F}(L, p, k)$ if $\tilde{F}(X(u), p, k) > \tilde{F}(R, p, k)$ then $\tilde{F}(X(u), p, k) := \tilde{F}(R, p, k)$ for p'' = 0; p'' < p; p'' := p'' + 1 do $S_R := \tilde{F}(R, p'', k)$ if $S_P < \infty$ then $S_I := \hat{F}(L, p - p^{\prime\prime})$ if $\tilde{F}(X(u), p, k) > S_I + S_R$ then $\tilde{F}(X(u), p, k) := S_L + S_R$ hainver

OR 2021: Knapsack under graph constraints. -22-

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

Backup: General one-neighbor problem (4)

 $\begin{array}{l} \text{if } X(u) = L \otimes R \text{ then} & \triangleright \text{ digraph}(X(u)) \text{ has no sinks} \\ \text{if } k = 0 \text{ then} & \\ \tilde{F}(X(u), p, k) := \tilde{F}(L, p, 0), \ S_R := \tilde{F}(R, p, 0) \\ \text{if } S_R < \tilde{F}(X(u), p, k) \text{ then } \tilde{F}(X(u), p, k) := S_R \\ & \triangleright \text{ Consider solutions with at least one vertex from both digraphs without restrictions} \\ \text{for } p' = 0; \ p' \le p; \ p' := p' + 1 \text{ do} \\ S_L := \hat{F}(L, p') \\ S_R := \hat{F}(R, p - p') \\ \text{ if } S_L + S_R < \tilde{F}(X(u), p, k) \text{ then } \tilde{F}(X(u), p, k) := S_L + S_R \end{array}$

The algorithm uses following dynamic program for knapsack on directed co-graphs without graph restrictions:

Chains

HEINRICH HEIN UNIVERSITÄT DÜSSELDOF Hochschule Niederrhein University of Applied Sciences

OR 2021: Knapsack under graph constraints. -23-