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1 Introduction

We estimate the remainder between Fourier coefficients of a 2π periodic function f and
their discrete counterparts computed by a discrete Fourier transform.

To this end, B2π denotes the space of 2π periodic bounded and R2π denotes the space
of 2π periodic Riemann integrable functions. Furthermore, let C2π be the space of
continuous 2π periodic functions, i.e. C2π ⊂ R2π ⊂ B2π.

For f ∈ R2π the typical discretization (f∧)∗n(k) of Fourier coefficients

f∧(k) :=
1

2π

∫ 2π

0

f(t)e−ikt dt

is given by a quadrature formula on 2n+1 equidistant knots uj,n := j· 2π
2n+1

, −n ≤ k ≤ n:

(f∧)∗n(k) :=
1

2n + 1

2n
∑

j=0

f(uj,n)e
−ikuj,n.

∑n

k=−n(f∧)∗n(k)ejkt is the Lagrange interpolation polynomial of degree at most n that
interpolates f at the knots uj,n.

The error rate of |f∧(k)− (f∧)∗n(k)| depends on the smoothness of f that is measured
in terms of moduli of smoothness. This is a fundamental concept of Approximation
Theory that discusses first and higher differences that – in contrast to derivatives –
always exist (cf. [15], and [1] for computation of moduli).
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Let f ∈ B2π and r ∈ N be a natural number. The r-th difference of f at point t on the
real axis R is defined as

∆1
hf(t) := f(t + h) − f(t), ∆r

hf(t) := ∆1
h∆

r−1
h f(t), r > 1, or

∆r
hf(t) :=

r
∑

j=0

(−1)r−j

(

r

j

)

f(t + jh).

The r-th uniform modulus of smoothness (or modulus of continuity) is the smallest
upper bound of the absolute value of r-th differences:

ωr(δ, f) := sup {|∆r
hf(t)| : t ∈ [0, 2π], 0 < h ≤ δ} .

This modulus typically is used for (uniformly) continuous functions for which it con-
verges to zero with a certain rate when δ → 0+.

Since we discuss Fourier coefficients that are defined via an integral we need to introduce
the integral modulus

ωr(δ, f, L1
2π) := sup

0<h≤δ

∫ 2π

0

|∆r
hf(t)| dt,

defined for Lebesgue integrable, i.e. especially for Riemann integrable, 2π periodic
functions f . Instead of the supremum norm here the L1

2π norm ‖f‖L1
2π

:=
∫ 2π

0
|f(t)| dt

is used, where L1
2π is the space of 2π periodic measurable functions having finite L1

2π

norm. Obviously,
ωr(δ, f, L1

2π) ≤ 2πωr(δ, f).

With the help of the integral modulus we now derive a naive error bound for Fourier
Lagrange coefficients.

Lemma 1.1 Let f ∈ R2π be a function that can be represented by its Fourier series
on the set {uj,n : n ∈ N, j ∈ {0, 1, 2, . . . , 2n}}. Additionally, for r ∈ N and α > 1 we
assume that ωr (δ, f, L1

2π) = O(δα) (δ → 0+). Then there exists a constant Cr > 0 only
dependent on r (and not on k or n) so that for n ∈ N and −n ≤ k ≤ n

|f∧(k) − (f∧)∗n(k)| =

∣

∣

∣

∣

∣

∣

∑

m∈Z\{0}

f∧(k + m(2n + 1))

∣

∣

∣

∣

∣

∣

≤ Cr

1

nα
. (1.1)

For the sake of completeness we give a short proof of this estimate that is based on the
Riemann Lebesgue type estimate with orders (cf. [2, p.168], k 6= 0)

|f∧(k)| ≤ Crωr

(

1

|k|
, f, L1

2π

)

, (1.2)

where the constant 0 < Cr < ∞ only depends on r ∈ N. Because of (1.2) and α > 1
the Fourier series is absolutely convergent:

∞
∑

k=−∞

∣

∣f∧(k)eikt
∣

∣ ≤ |f∧(0)| + 2Cr

∞
∑

k=1

ωr

(

1

k
, f, L1

2π

)

≤ |f∧(0)| + 2Cr

∞
∑

k=1

Ck−α < ∞.
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At a node t = uj,n all functions ei[k+m(2n+1)]t have the same value eikuj,n and as assumed
f(uj,n) is the limit of the Fourier series at the point uj,n. Since the series is absolutely
convergent we can change order of summation and find for each sample point uj,n:

f(uj,n) =

∞
∑

k=−∞

f∧(k)eikuj,n =

n
∑

k=−n

∞
∑

m=−∞

f∧(k + m(2n + 1))ei[k+m(2n+1)]uj,n

=

n
∑

k=−n

[

∞
∑

m=−∞

f∧(k + m(2n + 1))

]

eikuj,n.

Since the interpolation polynomial
∑n

k=−n(f
∧)∗n(k)eikt of degree at most n for the knots

uj,n is unique, the following representation of Fourier Lagrange coefficients holds true:

(f∧)∗n(k) =

∞
∑

m=−∞

f∧(k + m(2n + 1)). (1.3)

The distance between (1.3) and f∧(k) is the well known aliasing error. Again, we apply
Riemann Lebesgue type estimate with orders (1.2) for −n ≤ k ≤ n:

|f∧(k) − (f∧)∗n(k)| ≤
∞

∑

m=1

[|f∧(k + m(2n + 1))| + |f∧(k − m(2n + 1))|]

≤ Cr

∞
∑

m=1

[

ωr

(

1

k + m(2n + 1)
, f, L1

2π

)

+ ωr

(

1

m(2n + 1) − k
, f, L1

2π

)]

≤ 2Cr

∞
∑

m=1

ωr

(

1

nm
, f, L1

2π

)

.

Because of ωr(δ, f, L1
2π) = O(δα) with α > 1 one gets

|f∧(k) − (f∧)∗n(k)| ≤ C1
1

nα

∞
∑

m=1

1

mα
= C2

1

nα
.

Please note that, if f ∈ C2π and ωr (δ, f, L1
2π) = O(δα), the Fourier series is uniformly

convergent to f thus fulfilling the requirements of Lemma 1.1.

It seems to be natural that some additional smoothness like α > 1 is needed in con-
nection with pointwise interpolation. But what can we obtain for α ≤ 1? For example
α = 1 occurs for the the non-continuous but piecewise constant function

f0(t) :=







0, t = −π und t = 0,
1, t ∈] − π, 0[,
−1, t ∈]0, π[.

(1.4)

that can be written as the convergent series f0(t) = −
∑∞

k=1
4

(2k−1)π
sin((2k − 1)t).

The next sections deal with the averaged modulus and its properties. Then we derive an
error estimate for Fourier Lagrange coefficients that does not require extra assumptions
on the smoothness of f . The last section shows that the error estimate can not be
improved. We establish this sharpness in terms of counterexamples via a gliding hump
theorem that uses a resonance condition. To show resonance we utilise the aliasing
effect of the discrete Fourier transform.
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2 Delta norm and averaged modulus of smoothness

Point functionals like interpolation operators are not bounded with respect to the L1
2π-

norm. Therefore one can not write related error bounds in terms of ωr (δ, f, L1
2π). The

averaged modulus of smoothness or τ -modulus is better suited. For certain classes of
functions it behaves similar to ωr (δ, f, L1

2π) but shows significant better rates than the
uniform modulus. Instead of dealing with a sup-norm we follow [3] and [16] and use
the δ-norm

‖f‖δ :=

∫ 2π

0

M(δ, f, t) dt,

where a local supremum is defined as (cf. [13])

M(δ, f, x) := ‖f‖B[x−δ,x+δ] := sup{|f(t)| : t ∈ [x − δ, x + δ]}.

Because of [8] we are allowed to define the δ-norm with a Riemann integral instead of
an upper Riemann or Lebesgue integral. For m ∈ N and λ ∈ R, λ > 0, one has (cf.
[13]):

‖f‖mδ ≤ m‖f‖δ, ‖f‖λδ ≤ (1 + λ)‖f‖δ. (2.1)

Single function values do influence the δ-norm which usually is used to measure errors
in connection with approximation processes for Riemann integrable functions. In this
function space smoothness is measured by the τ -modulus. To introduce this modulus
we deal with the r-th local modulus of smoothness of f at a point x. For δ > 0 it is
defined as

ωr(δ, f, x) := sup

{

|∆r
hf(t)| : t, t + rh ∈

[

x − r
δ

2
, x + r

δ

2

]

, 0 < h ≤ δ

}

.

If f is measurable then the local modulus is measurable as well (see [15, p.13]). Fur-
thermore, in [8] it is shown that the r-th local modulus of smoothness of a Riemann
integrable function on a compact interval [a, b] is Riemann integrable itself. By selecting
[a, b] :=

[

−r δ
2
, 2π + r δ

2

]

this result holds true for ωr(δ, f, ·) as defined here. Therefore,
apart from Sendov’s and Korovkin’s definition of τ -moduli via the Lebesgue integral
(cf. [15, pp.12]), for f ∈ R2π we can use the Riemann integral to define (cf. [3], [7], [11],
[16]):

τr(δ, f) :=

∫ 2π

0

ωr(δ, f, t) dt.

The local modulus behaves similar but not exactly like the corresponding uniform
modulus because the interval of the local modulus depends on r and δ (see [15, p.8]):

τr(nδ, f) ≤ (2n)r+1τr(δ, f), (2.2)

τr(δ, f) ≤ 2τr−1

(

r

r − 1
δ, f

)

≤ 2τr−1 (2δ, f) ≤ 22r+1τr−1 (δ, f) , r > 1. (2.3)

For differentiable functions differences can be replaced by derivatives. Let C
(r)
2π the

space of 2π periodic r-times continuously differentiable functions with norm ‖f‖
(r)
2π :=
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∑r

k=0 ‖f
(k)‖B2π

, where ‖f (k)‖B2π
= supt∈[0,2π] |f

(k)(t)|. For f ∈ C
(1)
2π and r > 1 there

holds true (see [4], cf. [15, p.2])

ωr(δ, f) ≤ δωr−1(δ, f
′), (2.4)

ωr−1(δ, f
′) ≤ Cr

∫ δ

0

ωr(t, f)
1

t2
dt. (2.5)

For the integral modulus and averaged modulus (2.4) also is true (cf. [15, p.8]): If
f ∈ L1

2π is n-times absolutely continuous with n-th derivative in L1
2π, 1 ≤ n < r, it is

well known that

ωr(δ, f, L1
2π) ≤ δnωr−n(δ, f (n), L1

2π), (2.6)

τr(δ, f) ≤ Cr,nδnτr−n(δ, f (n)). (2.7)

As a consequence of Marchaud’s inequality (for the averaged modulus cf. [15, p.12])
there is a relationship between the rates of moduli defined for higher and lower differ-
ences. For f ∈ R2π and r ∈ N:

τr+1(δ, f) = O(δα) =⇒ τr(δ, f) =







O(δα), α < r,
O(| ln δ|δr), α = r,
O(δr), α > r.

(2.8)

Estimate (2.3) immediately shows that on the other hand (r, n ∈ N, α > 0)

τr(δ, f) = O(δα) =⇒ τr+n(δ, f) = O(δα). (2.9)

The same implications hold true for the uniform modulus (f ∈ B2π) and the integral
modulus (f ∈ L1

2π).

Also, all moduli of smoothness show saturation behaviour: If τr(δ, f) = o(δr) then
ωr(δ, f, L1

2π) = o(δr), and it is well known that the 2π periodic function f has to be a
constant a.e. If a τ -modulus on an interval [a, b] shows saturation behaviour, then the
function has to be an algebraic polynomial of degree r − 1 without the restriction a.e.
The proof given in [7] can be extended to the 2π periodic case without modification.
Therefore (f ∈ B2π):

τr(δ, f) = o(δr) ⇐⇒ f = c for a constant c.

3 Comparison between different moduli

Obviously, there is

ωr(δ, f, L1
2π) ≤ τr(δ, f) ≤ 2πωr(δ, f). (3.1)

For discontinuous functions the moduli indeed can show different rates, for example
(see (1.4))

ωr(δ, f0, L
1
2π) = O(δ), τr(δ, f0) = O(δ), ωr(δ, f0) 6= o(1).
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Consider f1(j2π) := 1 and f1(t) := 0 elsewhere. Then exact values of the moduli
directly follow from the definition of r-th differences:

ωr(δ, f1, L
1
2π) = 0, τr(δ, f1) =

(

r
⌊

r
2

⌋

)

· rδ, ωr(δ, f1) =

(

r
⌊

r
2

⌋

)

,

where
⌊

r
2

⌋

is the biggest integer less or equal r
2
.

In what follows we compare uniform and averaged moduli. For a given ε > 0 we find
some point t0 where |ωr(δ, f, t0) − ωr(δ, f)| < ε. Since ωr(2δ, f, t) ≥ ωr(δ, f, t0) for all
t ∈

[

t0 − r δ
2
, t0 + r δ

2

]

, we have

τr(2δ, f) ≥

∫ t0+r δ
2

t0−r δ
2

ωr(2δ, f, t) dt ≥

∫ t0+r δ
2

t0−r δ
2

ωr(δ, f, t0) dt ≥ rδ [ωr(δ, f) − ε]

so that with (2.2)

ωr(δ, f) ≤
1

rδ
τr(2δ, f) ≤

4r+1

rδ
τr(δ, f). (3.2)

Therefore, if τr(δ, f) = O(δ1+α) for 0 < α < 1 then ωr(δ, f) = O(δα). Implication (2.8)
also holds true for the uniform modulus: ω1(δ, f) = O(δα). This in turn means that
f is continuous. So if one expects for τr(δ, f) a higher rate of convergence than O(δ),
one has to assume continuity.

Because of (3.2) the rate of convergence of τr(δ, f) in comparison to ωr(δ, f) can not
be better than one additional power of δ. But on the other hand this best possible
rate can be obtained for a certain class of functions. Indeed, for absolutely continuous,
nonconcave functions on a compact interval [a, b] this has been shown in [7] by using
second differences.

Let us look at the 2π periodic continuous functions

gα(t) := | sin t|α, 0 < α ≤ 1.

By splitting up the integration interval I := [0, 2π] of the τ -modulus into the intervals
I1 := [0, δ], I2 :=

[

δ, π
2
− δ

]

, I3 :=
[

π
2
− δ, π

2
+ δ

]

, I4 :=
[

π
2

+ δ, π − δ
]

,
I5 := [π − δ, π + δ], I6 :=

[

π + δ, 3π
2
− δ

]

, I7 :=
[

3π
2
− δ, 3π

2
+ δ

]

,
I8 :=

[

3π
2

+ δ, 2π − δ
]

and I9 := [2π − δ, 2π] one gets

τ2(δ, gα) ≤ 8δ‖ω2(δ, gα, ·)‖B2π
+

∫

I2∪I4∪I6∪I8

ω2(δ, gα, t) dt

≤ 8δω2(δ, gα) + 4

∫

I1

ω2(δ, gα, t) dt.

On I1 functions −gα are nonconcave because −g′
α(t) = −α cos t sinα−1 t and

g′′
α(t) = −α

[

− sin t sinα−1 t + (α − 1) cos2 t sinα−2 t
]

> 0.

According to [7] we get
∫

I1

ω2(δ, gα, t) dt =

∫

I1

ω2(δ,−gα, t) dt ≤ 8δω1(δ,−gα)
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so that we finally have

τ2(δ, gα) ≤ 8δ [ω2(δ, gα) + 4ω1(δ, gα)] ≤ 8δ [2ω1(δ, gα) + 4ω1(δ, gα)]

= 48δω1(δ, gα) ≤ 48δ1+α. (3.3)

On the other hand ω2(δ, gα) shows no better rate than δα. For δ < π
2

a second difference
at the point 0 gives:

ω2(δ, gα) ≥ |gα(−δ) − 2gα(0) + gα(δ)| = 2 sinα(δ) ≥ 2

(

2

π

)α

δα. (3.4)

Next we compare integral and averaged moduli. We start with a weak type inequality
that holds true for continuous functions f (cf. [15, p.18] and the literature cited there)

τr(δ, f) ≤ Crδ

∫ δ

0

t−2ωr(t, f, L1
2π) dt.

So if continuous f satisfies Lipschitz condition ωr(t, f, L1
2π) = O(δα) for α > 1, it

follows:

τr(δ, f) ≤ Cδ

∫ δ

0

t−2tα dt = O(δα).

Therefore, for α > 1 and f ∈ C2π both moduli behave equivalent (cf. (3.1)):

τr(δ, f) = O(δα) ⇐⇒ ωr(δ, f, L1
2π) = O(δα). (3.5)

Regarding rates the averaged modulus does not show a disadvantage against the in-
tegral modulus. For α ≤ 1 one immediately gets a corresponding result for piecewise
monotonous functions:

Lemma 3.1 Let 0 = x0 < x1 < x2 < · · · < xn = 2π and f ∈ B2π a function that
is monotonous on each of the intervals [xk−1, xk], 1 ≤ k ≤ n. Then for 0 < δ <
min1≤k≤n(xk − xk−1):

τ1(δ, f) ≤ ω1(δ, f, L1
2π) + nδω1(δ, f).

Especially, for 0 < α ≤ 1:

ω1(δ, f, L1
2π) = O(δα) ⇐⇒ τ1(δ, f) = O(δα). (3.6)

Proof

τ1(δ, f) ≤ nδω1(δ, f) +

n
∑

k=1

∫ xk−
δ
2

xk−1+ δ
2

ω1(δ, f, t) dt

≤ nδω1(δ, f) +

n
∑

k=1

∫ xk−
δ
2

xk−1+
δ
2

∣

∣

∣

∣

f

(

t −
δ

2

)

− f

(

t +
δ

2

)
∣

∣

∣

∣

dt

≤ nδω1(δ, f) + ω1(δ, f, L1
2π).
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In fact there are continuous functions f that are nowhere monotonous, i.e. there is no
interval [a, b] ⊂ [0, 2π] on which f is monotonous. Therefore, it appears to be an open
problem if one can replace piecewiese monotonicity by continuity, thus extending (3.5)
to α > 0.

Lemma 3.1 combined with (2.8) and (2.9), that hold true for both the integral and the
averaged moduli, implies that

ωr(δ, f, L1
2π) = O(δα) ⇐⇒ ω1(δ, f, L1

2π) = O(δα)

⇐⇒ τ1(δ, f) = O(δα) ⇐⇒ τr(δ, f) = O(δα)

for piecewise monotonous functions, 0 < α < 1, and r ∈ N. So for many functions
integral moduli and averaged moduli show the same rates.

4 An error bound for Fourier Laplace coefficients

After discussing properties of the τ -modulus we now apply this concept. We follow
[14, p.41] to establish an error bound for |f∧(k) − (f∧)∗n(k)| and f ∈ R2π in terms of
τ -moduli:

|f∧(k)| ≤
1

2π

∫ 2π

0

|f(t)| dt ≤
1

2π
‖f‖ 1

n
,

|(f∧)∗n(k)| ≤
1

2n + 1

2n
∑

j=0

|f(uj,n)| =
1

2π

2n
∑

j=0

∫ uj+1,n

uj,n

|f(uj,n)| dt

≤
1

2π

2n
∑

j=0

∫ uj+1,n

uj,n

M

(

f, t,
2π

2n + 1

)

dt

=
1

2π

∫ 2π

0

M

(

f, t,
2π

2n + 1

)

dt

=
1

2π
‖f‖ 2π

2n+1
≤

1

2π
‖f‖π

n

(2.1)

≤
1 + π

2π
‖f‖ 1

n
.

Since (f∧)∗n(k) is computed from discrete function values, |(f∧)∗n(k)| can not be esti-
mated against an integral norm of f .

To estimate the difference between f∧(k) and (f∧)∗n(k) one uses the property that

p∧(k) = (p∧)∗n(k)

for all p ∈ Πn, i.e. trigonimetric polynomials p of degree at most n. This is because the
interpolation polynomial of p equals to p. That allows us to compare |f∧(k)−(f∧)∗n(k)|
with an error of best approximation. For each p ∈ Πn we get

|f∧(k) − (f∧)∗n(k)| = |[f − p]∧(k) − ([f − p]∧)∗n(k)|

≤ |[f − p]∧(k)| + |([f − p]∧)∗n(k)|

≤
1

2π
‖f − p‖ 1

n
+

1 + π

2π
‖f − p‖ 1

n
=

[

1

2
+

1

π

]

‖f − p‖ 1
n
.
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Therefore, the error En of best polynomial approximation is an upper bound:

|f∧(k) − (f∧)∗n(k)| ≤

[

1

2
+

1

π

]

inf{‖f − p‖ 1
n

: p ∈ Πn} =:

[

1

2
+

1

π

]

En(f ; R2π). (4.1)

Is is known (cf. [12]) that En(f ; R2π) ≤ Crτr(
1
n
, f) where the constant Cr is independent

of f and n. We have shown the following result (see [14, p.41]):

Theorem 4.1 For f ∈ R2π there holds true the error bound (|k| ≤ n):

|f∧(k) − (f∧)∗n(k)| ≤

[

1 +
1

π

]

Crτr

(

1

n
, f

)

≤ [2 + 2π]Crωr

(

1

n
, f

)

. (4.2)

With (3.5) this gives another proof of (1.1) for continuous functions. With (3.6) it
extends (1.1) for piecewise monotonous functions like f0 (see (1.4)) to 0 < α ≤ 1.

5 Sharpness of the error bound

The main proposition of this article is the following result. It proves that in (4.2) the
error can show the same rate as the τ -modulus, when at the same time the rate is
strictly better than the rate of the uniform modulus (up to one power of 1

n
).

Theorem 5.1 Let 0 < α < 1. For r = 1 and 0 < β < α, or r ≥ 2 and 0 < β < 1− α,
there exists a counterexample fα,β ∈ C2π so that for each k ∈ Z there holds true

τr (δ, fα,β) = O
(

δr−1+α
)

,

ωr(δ, fα,β) 6=

{

O(δβ), r = 1,
O(δr−2+α+β), r ≥ 2,

|f∧
α,β(k) − (f∧

α,β)∗n(k)| 6= o

(

1

nr−1+α

)

.

Because of (4.1) the counterexample also establishes the sharpness of the estimate
En(f ; R2π) ≤ Crτr(

1
n
, f) for the best approximation:

En(fα,β ; R2π) 6= o

(

1

nr−1+α

)

.

As a consequence of (3.2) there is ωr(δ, fα,β) ≤ 4r+1

rδ
τr(δ, fα,β)= O(δr−2+α). Therefore

there can’t be a counterexample with ωr(δ, fα,β) 6= O(δr−2+α).

For r = 2 the following proof additionally shows that one can set β = 0 if one restricts
the values of k to a finite subset F ⊂ Z. Then there is a counterexample fα,0 ∈ C2π

such that for all k ∈ F:

τ2 (δ, fα,0) = O
(

δ1+α
)

,

ω2(δ, fα,0) ≥ cδα, (5.1)

|f∧
α,0(k) − (f∧

α,0)
∗
n(k)| 6= o

(

1

n1+α

)

. (5.2)
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In the context of Approximation Theory such negative results are often obtained on
the basis of quantitative extensions of the uniform boundedness principle developed by
Dickmeis, Nessel and van Wickeren (cf. [5] and [6]).

An abstract modulus of smoothness is a function ω, continuous on [0,∞) such that,
for 0 < δ1, δ2,

0 = ω(0) < ω(δ1) ≤ ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2). (5.3)

The functions ω(δ) := δα, 0 < α ≤ 1, satisfy these conditions.

For a (real) Banach space X with norm ‖ · ‖X let X∼ be the set of non-negative-
valued sublinear bounded functionals T on X, i.e., T maps X into R such that for all
f, g ∈ X, c ∈ R

Tf ≥ 0, T (f + g) ≤ Tf + Tg, T (cf) = |c|Ff,

‖T‖X∼ := sup{Tf : ‖f‖X ≤ 1} < ∞.

Theorem 5.2 Suppose that for a family of remainders {Tn,k : n ∈ N, k ∈ Bn} ⊂ X∼,
where (Bn)n∈N is a sequence of non-empty index sets, and for a measure of smoothness
{Sδ : δ > 0} ⊂ X∼ there are test elements gn ∈ X such that (δ > 0, n → ∞)

‖gn‖X ≤ C1 for all n ∈ N, (5.4)

Sδgn ≤ C2 min

{

1,
σ(δ)

ϕn

}

for all n ∈ N, δ > 0, (5.5)

‖Tn,k‖X∼ ≤ C3,n for all k ∈ Bn, n ∈ N, (5.6)

Tn,kgj ≤ C4,kC5,jϕn for all 1 ≤ j ≤ n − 1, k ∈ Bn, n ∈ N, (5.7)

Tn,kgn ≥ C6,k > 0 for all k ∈ Bn, (5.8)

where σ(δ) is a function, strictly positive on (0,∞), and (ϕn)n∈N ⊂ R is a strictly
decreasing sequence with limn→∞ ϕn = 0. Then for each modulus ω satisfying (5.3)
and

lim
δ→0+

ω(δ)

δ
= ∞

there exists a (strictly increasing) subsequence (nk)k∈N ⊂ N and a counterexample fω ∈
X such that (δ → 0+, n → ∞)

Sδfω = O (ω(σ(δ))) ,

Tn,kfω 6= o(ω(ϕn))

for each k ∈ B := lim supk→∞ Bnk
:=

∞
⋂

k=1

∞
⋃

j=k

Bnj
.

For a proof using a gliding hump, further comments, and applications to Approximation
Theory see [5, 9, 10] and the literature cited there. We use this general concept in the
following proof.
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Proof of Theorem 5.1 Let r ∈ N. We choose parameters as follows: Let X := C
(r−1)
2π

be the Banach space with norm ‖f‖
C

(r−1)
2π

:=
∑r−1

k=0 ‖f
(k)‖B2π

, Tn,kf := nr−1|f∧(k) −

(f∧)∗n(k)|, n ∈ N, k ∈ Bn := {−n,−n + 1, . . . , n − 1, n} such that

Tn,kf ≤ nr−1

[

‖f‖B2π
+

1

2n + 1

2n
∑

j=0

‖f‖B2π

]

≤ nr−12‖f‖
C

(r−1)
2π

,

i.e., ‖Tn,k‖[C
(r−1
2π )]∼

≤ 2 nr−1 showing (5.6).

Setting Sδf := ω1

(

δ, f (r−1)
)

it follows Sδf ≤ 2‖f‖
C

(r−1)
2π

and therefore ‖Sδ‖[C
(r−1)
2π ]∼

≤ 2,

i.e. Sδ ∈ [C
(r−1)
2π ]∼.

The rate of convergence is described by σ(δ) := δ and ϕn := 1
n
.

Key to the proof is the definition of the resonance sequence

gn(t) :=
1

nr−1

2n
∑

j=0

1

2|n−j|
ei(n+1+j)t ∈ Π3n+1.

Please note that the lowest frequency of this sum is n + 1 meaning g∧
n (k) = 0, |k| ≤ n.

When computing the error we therefore only have to deal with the Fourier Lagrange
coefficients. The aliasing phenomenon will give the resonance condition (5.8).

We first verify (5.4):

‖gn‖C
(r−1)
2π

≤
1

nr−1

2n
∑

j=0

1

2|n−j|
‖ei(n+1+j)t‖

C
(r−1)
2π

≤
1

nr−1

[

−1 + 2

n
∑

j=0

1

2j

]

r−1
∑

j=0

(3n + 1)j ≤

[

−1 + 2

∞
∑

j=0

1

2j

]

r
(3n + 1)r−1

nr−1

=

[

−1 +
2

1 − 1
2

]

r

[

3 +
1

n

]r−1

≤ 3r · 4r−1. (5.9)

Condition (5.5) is satisfied because of

Sδgn = ω1

(

δ, g(r−1)
n

)

≤ δ‖g(r)
n ‖B2π

≤
δ

nr−1

[

2n
∑

j=0

1

2|n−j|
(n + 1 + j)r

]

≤
δ

nr−1

[

−1 +
2

1 − 1
2

]

(3n + 1)r = δ3(3n + 1)

(

3n + 1

n

)r−1

≤ δ12n4r−1 = 4r−112
σ(δ)

ϕn

and (see (5.9))
Sδgn ≤ 2‖g(r−1)

n ‖B2π
≤ 2‖gn‖C

(r−1)
2π

≤ 6r4r−1

so that Sδgn = O(min{1, σ(δ)/ϕn}).
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To show (5.7) we discuss two cases: If n ≥ 3j + 1 Fourier- and Fourier Lagrange
coefficients of gj ∈ Π3j+1 are identical: Tn,kgj = 0. If n < 3j + 1:

Tn,kgj ≤ ‖Tn,k‖[C
(r−1)
2π ]∼

‖gj‖C
(r−1)
2π

≤ 2 nr−1 · 3r · 4r−1

≤ 2 · (3j + 1)r−1 · 3r · 4r−1 ·
3j + 1

n
= C5,jϕn.

Together, both cases give (5.7):

Tn,kgj ≤ C5,jϕn for all 1 ≤ j ≤ n − 1, k ∈ Bn, n ∈ N.

It remains to show the resonance condition (5.8). Because (1.1) holds true for gn, we
can compute the error:

Tn,kgn = nr−1|g∧
n(k) − (g∧

n )∗n(k)| = nr−1|g∧
n(k + 2n + 1)|

=
nr−1

nr−1

1

2|k|
=: C6,k > 0 for all k ∈ Bn.

We can apply Theorem 5.2 for ω(δ) := δα. Since (nk)k∈N is a strictly increasing sequence
it follows

B :=

∞
⋂

k=1

∞
⋃

j=k

Bnj
=

∞
⋂

k=1

Z = Z.

Therefore, we get a counterexample fα ∈ C
(r−1)
2π such that for each k ∈ Z there holds

true (δ → 0+, n → ∞)

ωr(δ, fα)
(2.4)

≤ δr−1ω1

(

δ, f (r−1)
α

)

= δr−1Sδfα = O(δr−1+α), (5.10)

τr(δ, fα) ≤ 2πωr(δ, fα) = O
(

δr−1+α
)

,

|f∧
α (k) − (f∧

α )∗n(k)| =
1

nr−1
Tn,kfα 6= o

(

1

nr−1+α

)

.

We have shown the sharpness of the coarser error bound

|f∧(k) − (f∧)∗n(k)| ≤ Cωr

(

1

n
, f

)

.

This especially is true for the finer bound |f∧(k) − (f∧)∗n(k)| ≤ Cτr

(

1
n
, f

)

. Now we
will modify fα by adding a function that is smooth with respect to the τ -modulus but
less smooth with respect to the uniform modulus. Then only the finer bound becomes
sharp.

Here we define 2π periodic functions gβ,1 := | sin t|
β
2 , gβ,2 := | sin t|α+ β

2 , and for r > 2

gβ,r :=

∫ t

0

[gβ,r−1 − g∧
β,r−1(0)].

Because of (3.3) for α = β

2
and (2.8), (2.7) we find (r ≥ 2)

τ2(δ, gβ,1) = O
(

δ1+ β
2

)

=⇒ τ1(δ, gβ,1) = O(δ),
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gβ,r ∈ C
(r−2)
2π and

τr(δ, gβ,r) ≤ Crδ
r−2τ2(δ, gβ,2) = O

(

δr−1+α+ β
2

)

.

The function fα,β := fα + gβ,r fulfills condition τr(δ, fα,β) = O(δr−1+α).

The corresponding remainder for r = 1 is ( 1
n

= o
(

1
nα

)

):

Tn,k (fα + gβ,1) ≥ Tn,kfα − Tn,kgβ,1 ≥ Tn,kfα − c1τ1

(

1

n
, gβ,1

)

≥ Tn,kfα − c2
1

n
6= o

(

1

nα

)

.

For r ≥ 2 there is (note that 1

n
α+

β
2

= o
(

1
nα

)

):

Tn,k (fα + gβ,r) ≥ Tn,kfα − Tn,kgβ,r ≥ Tn,kfα − c1
1

nα+ β
2

6= o

(

1

nα

)

.

If one sets β = 0 and restricts k to elements of F ⊂ Z, where F is a finite set, then this
estimate also holds true for fα,0 := fα + c0

2c1
gβ,r with

c0 := min
k∈F

lim sup
n→∞

nαTn,kfα > 0.

Especially for r = 2 this gives (5.2).

So fα,β demonstrates that the error bound in terms of the averaged modulus is sharp.
It remains to estimate the rate of the uniform modulus. For r = 1 (0 < δ < π

2
) and

β < α there is

ω1 (δ, fα + gβ,1) ≥ ω1 (δ, gβ,1) − ω1 (δ, fα)

≥
∣

∣

∣
| sin(0 + δ)|

β
2 − | sin 0|

β
2

∣

∣

∣
− cδα ≥

(

2

π

)
β
2

δ
β
2 − cδα 6= o

(

δ
β
2

)

.

This implies ω1 (δ, fα + gβ,1) 6= O(δβ).

For r ≥ 2 we start with (3.4), i.e.

ω2(δ, gβ,2) ≥ Cδα+ β
2 . (5.11)

Note that this is also true for β = 0 giving (5.1).

If we assume that ωr(δ, gβ,r) ≤ Cδr−2+α+β, we get for r > 2:

ωr−1(δ, gβ,r−1) = ωr−1(δ, g
′
β,r)

(2.5)

≤ C1

∫ δ

0

ωr(t, gβ,r)
1

t2
dt

≤ C2

∫ δ

0

tr−4+α+β dt ≤ C3δ
(r−1)−2+α+β .

By iterating this argument it follows

ω2(δ, gβ,2) ≤ Cδα+β
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in contradiction to (5.11). Because of (5.10) we have shown

ωr(δ, fα + gβ,r) ≥ ωr(δ, gβ,r) − ωr(δ, fα) 6= O(δr−2+α+β).

So far we have excluded the case α = 1. We restrict ourselves to r = 2 and again
discuss

g(t) := g1,1(t)= | sin(t)|=
1

π

[

2 +
∞

∑

k=1

1
1
4
− k2

cos 2kt

]

=
1

2π

∞
∑

k=−∞

1
1
4
− k2

ei2kt.

We already know that (see (3.3) for α = 1)

τ2(δ, g) ≤ 48δω1(δ, g) ≤ 48δ2.

Let |k| ≤ n. For coefficients with an even index we find:

|(g∧)∗n(2k) − g∧(2k)| =

∣

∣

∣

∣

∣

∞
∑

m=1

g∧(2k + m(2n + 1)) + g∧(2k − m(2n + 1))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

m=1

g∧(2k + 2m(2n + 1)) + g∧(2k − 2m(2n + 1))

∣

∣

∣

∣

∣

=
1

2π

∣

∣

∣

∣

∣

∞
∑

m=1

1
1
4
− [k + m(2n + 1)]2

+
1

1
4
− [k − m(2n + 1)]2

∣

∣

∣

∣

∣

.

All summands are negative and we can continue for k > 0

|(g∧)∗n(2k) − g∧(2k)| ≥ −
1

2π

∞
∑

m=1

1
1
4
− [k + m(2n + 1)]2

≥
1

2π

∞
∑

m=1

1

[k + m(2n + 1)]2
≥

1

2π

∞
∑

m=1

1

[n + m(2n + 1)]2

≥ n−2 1

2π

∞
∑

m=1

1

[1 + 3m]2
= cn−2,

thus establishing the sharpness.
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