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Abstract

This paper discusses the sharpness of an error bound for the standard Galer-
kin method for the approximate solution of a parabolic differential equation.
A backward difference is used for discretization in time, and a variational
method like the finite element method is considered for discretization in
space. The error bound is written in terms of an averaged modulus of continu-
ity. Whereas the direct estimate follows by standard methods, the sharpness
of the bound is established by an application of a quantitative extension of
the uniform boundedness principle as proposed in [W. Dickmeis, R.J. Nes-
sel, E. van Wickeren, A general approach to counterexamples in numerical
analysis, Numer. Math. 43 (1984) 249–263].
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1 Introduction

One approach to solve initial boundary value problems for parabolic differen-
tial equations numerically is to use a variational method for the elliptic part
of the equation in combination with finite differences for a discretization in
time (cf. [20]).

Here we discuss partial differential equations like the heat equation

∂

∂t
u(t, ~x) − c∆u(t, ~x) = f(t, ~x) (1.1)

in a weak representation and replace the time derivative by a backward dif-
ference. The resulting Galerkin approximation is analyzed in detail in [18].
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Moduli of continuity are an established means to express error bounds
for initial boundary value problems that are solved by difference schemes,
cf. [1] where a probabilistic interpretation of Green’s functions is applied, or
[7, 8] for a purely analytical approach. Also, in connection with variational
methods, such moduli are used in error estimates for elliptic problems and
the estimates can be established via K-functional techniques (cf. [17, 10]).

Here, we give a similar error bound based on an averaged modulus of
continuity (τ -modulus) that measures the smoothness of the exact solution
and determines the rate of convergence of the approximation. Averaged
moduli were introduced by the Bulgarian school of Approximation Theory,
see [19] and [2] for computational aspects.

Then we prove the sharpness of this estimate in terms of counterexamples.
We obtain these examples by using a quantitative extension of the uniform
boundedness principle. This involves a new approach to the construction
of resonance elements that are a prerequisite for applying the boundedness
principle.

We use the same train of thought as in our previous work that utilizes
discrete Green’s functions (cf. [6]). This tool was used in [3] to establish the
sharpness of an error bound in connection with finite difference schemes for
ordinary and later in [7, 8] for partial differential equations. It was adapted
in [1]. In the present work we combine discrete Green’s functions with eigen-
functions of the problem.

The treatment is restricted to those inhomogeneous problems for which
solutions actually belong to appropriate Banach spaces of continuously dif-
ferentiable functions.

2 Preliminaries

Let H and V , V ⊂ H , be real Hilbert spaces with inner products (·, ·)H and
(·, ·)V such that for all u ∈ V one has ‖u‖H ≤ ‖u‖V . Further, let a(·, ·) be a
coercive (V -elliptic), bounded and symmetric bilinear form, i. e., constants
0 < c, C ∈ R exist such that

a(u, u) ≥ c‖u‖2
V for all u ∈ V, (2.1)

|a(u, v)| ≤ C‖u‖V ‖v‖V for all u, v ∈ V, (2.2)

and a(u, v) = a(v, u) for all u, v ∈ V .
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Riesz representation theorem for Hilbert spaces states that for each boun-
ded linear functional f ∗ on V and for each weak problem

a(u, v) = f ∗(v) for all v ∈ V. (2.3)

there is a unique solution u ∈ V . Due to the theorem of Lax and Milgram
this still is true if a(·, ·) is not symmetric as it would be the case in many
applications. Indeed, symmetry of a(·, ·) will not be needed in the proof of
the error estimate Theorem 3.1 but will be utilized to prove sharpness and
is given in the context of (1.1).

By applying the finite element method one rewrites a differential equation
into a weak problem by partial integration. Then one solves this problem
in a (finite dimensional) subspace Vh ⊂ V (Ritz-Galerkin method). So one
looks for an approximate solution uh ∈ Vh such that

a(uh, v) = f ∗(v) for all v ∈ Vh. (2.4)

Obviously, each u ∈ V is solution of a weak problem (2.3) with right
side f ∗(·) := a(u, ·). The Ritz projection Ph : V → Vh is defined via the
associated unique discrete solution uh of (2.4): Phu := uh, i. e. Phu ∈ Vh is
the unique solution of

a(Phu, v) = a(u, v), i. e., a(u − Phu, v) = 0 for all v ∈ Vh. (2.5)

Linear operator Ph is bounded because of (2.1), (2.5), and (2.2)

c‖Phu‖
2
V ≤ a(Phu, Phu) = a(u, Phu) ≤ C‖u‖V ‖Phu‖V ,

i. e. ‖Phu‖V ≤ C
c
‖u‖V . Also, Ph is a projection: Phv = v for all v ∈ Vh.

For a Banach space X let (s ∈ N0 := {0, 1, 2, 3, . . .}, [a, b] ⊂ R, the set of
real numbers)

Cs([a, b], X) := {u : [a, b] → X : u is s-times continuously differentiable},

C([a, b], X) := C0([a, b], X), be a space of abstract functions with norm

‖u‖Cs([a,b],X) :=

s
∑

j=0

[

sup
t∈[a,b]

‖u(j)(t)‖X

]

.

We call the X-valued (i. e. abstract) function u differentiable with derivative
u′ in a point t0 iff limt→t0 ‖[u(t) − u(t0)]/[t − t0] − u′(t0)‖X = 0. For real
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valued functions u : [a, b] → X = R this strong definition becomes the
original definition of a derivative.

In the same fashion the Riemann integral of an abstract function can be
defined such that the usual rules and the fundamental theorem hold true (see
[16, p. 298] or [15, pp. 2–7]). For example, if u ∈ C1([a, b], X) then

∫ b

a

u′(t) dt = u(b) − u(a) ∈ X.

It can be easily shown that Cs([a, b], X) is a Banach space because of the
completeness of X.

For the direct estimate we need an averaged modulus of continuity for
abstract functions (cf. [19, p. 7]). To this end, the r-th difference, r ∈ N, of
a function u at point y is defined as

∆1
νu(y) := u(y + ν) − u(y), ∆r

νu(y) := ∆1
ν∆

r−1
ν u(y), r > 1.

For δ > 0 the r-th averaged modulus of continuity of u is given as

τr(δ, u, C([a, b], X)) :=

∫ b

a

[

sup{‖∆r
νu(y)‖X : y, y+rν ∈ [t−δ, t+δ]∩[a, b]}

]

dt.

In this paper we only deal with a first averaged modulus (r = 1).
Please note that for u ∈ C([a, b], X) the integrand is continuous and the

real-valued Riemann integral is well defined. Let us remark that a Riemann
integrable abstract function u does not need to be continuous almost every-
where (cf. [13]). Therefore, by replacing | · | with ‖ · ‖X the results of [11]
cannot be readily used to show that the integrand of an averaged modulus is
Riemann integrable on [a, b] for integrable but non-continuous functions u.

3 Discretization and direct estimate

Instead of (1.1), we deal with the following weak problem (T > 0): Find a
function u ∈ C([0, T ], V ) ∩ C1([0, T ], H) that fulfills

(ut(t), v)H + a(u(t), v) = (f(t), v)H for all v ∈ V, t ∈ [0, T ], (3.1)

u(0) = v0,

where the right side is determined by f : [0, T ] → H and an initial value
v0 ∈ V is given. Here we denote the first derivative of u by ut. Beyond it,
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the notation utt will be used for the second derivative with respect to the
time variable.

For theorems dealing with existence and uniqueness of solutions see [14,
Chapter 2], [18, Chapter 11], and [9, Chapter 7.1.1].

Our approach to counterexamples is to find functions u ∈ C1([0, T ], V )
with suitable approximation properties that in a second step can be seen
as solutions of problems (3.1). The counterexamples will be chosen such
that the right side of (3.1) indeed has a representation (f(t), ·)H . But for
intermediate results it seems appropriate to replace the right side for each
t ∈ [0, T ] by more general bounded linear functionals f ∗

(t) on V that might
not have a representation via the inner product of H . Please note that we
do not need to find a solution u(t) of (3.1) for a given functional f ∗

(t). Vice

versa, the functional will be defined by a given ”solution” u(t).
Throughout this paper we deal with the following discretization of (3.1).

We replace the derivative by a backward difference on the mesh Zk :=
{0, k, 2k, 3k, . . .} ∩ [0, T ] where k > 0 denotes the distance of consecutive
points: ∂tu(t) := (u(t) − u(t − k))/k. Also, we replace V by (finite dimen-
sional) subspaces ∅ 6= Vh ∈ V , h ∈ (0, 1] (finite element spaces). Additionally,
we assume that Vh1

⊂ Vh2
for h2 < h1. For example, this can be obtained

by refining triangulations where h denotes a parameter describing the size of
the triangles.

Now we are looking for a function uk,h : Zk → Vh such that for all v ∈ Vh,
0 < t ∈ Zk:

(∂tuk,h(t), v)H + a(uk,h(t), v) = (f(t), v)H, (3.2)

a(uk,h(0), v) = a(v0, v).

Using the Ritz projection Ph (see (2.5)) we can write the initial condition as
uk,h(0) = Phv0.

There exists a unique solution uk,h that can be computed iteratively be-
ginning with uk,h(0) = Phv0 via the recursion

(uk,h(t), v)H + ka(uk,h(t), v) = (uk,h(t − k), v)H + k(f(t), v)H

for all v ∈ Vh, 0 < t ∈ Zk, because for

f ∗(v) := (uk,h(t − k) + kf(t), v)H

and the coercive, bounded, and symmetric bilinear form

â(v, w) := (v, w)H + ka(v, w)
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uk,h(t) is the unique solution of the weak problem

â(uk,h(t), v) = f ∗(v) for all v ∈ Vh.

Please note that the discrete problem (3.2) still has a unique solution if
one replaces (f(t), ·)H by a more general bounded linear functional f ∗

(t) on
Vh, as mentioned before.

Theorem 3.1 Let u ∈ C1([0, T ], V ) be a solution of problem (3.1) where
the right side might be a bounded linear functional f ∗

(t) on V for each t ∈

[0, T ] (instead of (f(t), ·)H) and let uk,h be a solution of the corresponding
discretization (3.2). Then for each k > 0 and h ∈ (0, 1] there holds true:

max
t∈Zk

‖u(t) − uk,h(t)‖H

≤ τ1(k, ut, C([0, T ], H)) + 2

∫ T

0

‖ut(t) − Ph(ut(t))‖H dt + ‖v0 − Phv0‖H .

If v0 and ut(t) belong to Vh then on the right side only the averaged
modulus remains. Obviously, this also is the case if V = Vh.

The error is measured in terms of the smoothness of solution u. The
smoothness is determined by the regularity of v0 and f , and vice versa (see
[9, Chapter 7.1.3]).

For the sake of completeness we prove the direct estimate following [20,
p. 12].

Proof.

uk,h(t) − u(t) = [uk,h(t) − Phu(t)] + [Phu(t) − u(t)] =: e1(t) + e2(t).

We put e1(t) into the left side of (3.2) and get utilizing (3.2), (3.1), and (2.5)
for v ∈ Vh, 0 < t ∈ Zk:

(

∂te1(t), v
)

H
+ a(e1(t), v)

=
(

∂tuk,h(t), v
)

H
+ a(uk,h(t), v) −

(

∂tPhu(t), v
)

H
− a(Phu(t), v)

= f ∗
(t)(v) −

(

∂tPhu(t), v
)

H
− a(Phu(t), v)

=
(

ut(t), v
)

H
+ a(u(t), v) −

(

∂tPhu(t), v
)

H
− a(Phu(t), v)
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=
(

ut(t), v
)

H
−
(

∂tPhu(t), v
)

H

=
(

ut(t) − ∂tu(t), v
)

H
+
(

∂t[u(t) − Phu(t)], v
)

H

=
(

ut(t) − ∂tu(t) − ∂te2(t), v
)

H
.

We can now choose v = e1(t) ∈ Vh. That is a reason for decomposing the
error into e1(t) belonging to Vh and a rest that is easy to handle.

1

k

(

e1(t) − e1(t − k), e1(t)
)

H
=
(

∂te1(t), e1(t)
)

H

=
(

ut(t) − ∂tu(t) − ∂te2(t), e1(t)
)

H
− a(e1(t), e1(t))

≤
(

ut(t) − ∂tu(t) − ∂te2(t), e1(t)
)

H
,

such that

1

k
‖e1(t)‖

2
H =

1

k

(

e1(t − k), e1(t)
)

H
+
(

ut(t) − ∂tu(t) − ∂te2(t), e1(t)
)

H
,

‖e1(t)‖H ≤ ‖e1(t − k)‖H + k‖ut(t) − ∂tu(t)‖H + k‖∂te2(t)‖H .

For j ∈ N, jk ∈ Zk, we get (note that ‖e1(0)‖H = ‖uk,h(0) − Phv0‖H = 0)

‖e1(jk)‖H ≤ k

j
∑

l=1

‖ut(lk) − ∂tu(lk)‖H + k

j
∑

l=1

‖∂te2(lk)‖H . (3.3)

The first sum can be estimated by an averaged modulus of continuity (jk ≤
T ):

k

j
∑

l=1

‖ut(lk) − ∂tu(lk)‖H

= k

j
∑

l=1

∥

∥

∥

∥

ut(lk) −
1

k

∫ lk

(l−1)k

ut(t) dt

∥

∥

∥

∥

H

≤

j
∑

l=1

∫ lk

(l−1)k

‖ut(lk) − ut(t)‖H dt

≤

j
∑

l=1

∫ lk

(l−1)k

[

sup{‖ut(t1) − ut(t2)‖H : t1, t2 ∈ [t − k, t + k] ∩ [0, T ]}
]

dt

≤

∫ T

0

[

sup{‖ut(t1) − ut(t2)‖H : t1, t2 ∈ [t − k, t + k] ∩ [0, T ]}
]

dt
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= τ1(k, ut, C([0, T ], H)). (3.4)

Since Ph is continuous, for u ∈ C1([0, T ], V ) there holds true: (Phu(t))t =
Ph(ut(t)) and Ph(ut(t)) ∈ C([0, T ], V ). Therefore

∂te2(lk) =
1

k

∫ lk

(l−1)k

[(Phu(t))t − ut(t)] dt =
1

k

∫ lk

(l−1)k

[Ph(ut(t)) − ut(t)] dt,

k

j
∑

l=1

‖∂te2(lk)‖H ≤

∫ T

0

‖ut(t) − Ph(ut(t))‖H dt. (3.5)

(3.3)–(3.5) establish the error bound for e1:

‖e1(jk)‖H ≤ τ1(k, ut, C([0, T ], H)) +

∫ T

0

‖ut(t) − Ph(ut(t))‖H dt.

Finally, we estimate e2:

‖e2(t)‖H = ‖Phu(t) − u(t)‖H

=

∥

∥

∥

∥

Phu(0) − u(0) +

∫ t

0

(Phu(y))t − ut(y)dy

∥

∥

∥

∥

H

≤ ‖v0 − Phv0‖H +

∫ T

0

‖ut(y) − Ph(ut(y))‖Hdy.

This direct estimate serves as a simple example for our approach to show
sharpness on the basis of counterexamples. Second order approximations like
a Crank-Nicolson discretization (cf. [20, p. 14]) would lead to a better rate
of convergence but can be analyzed along the same methods (cf. [7] for finite
difference schemes).

For real-valued, continuous functions a weak type inequality between the
averaged modulus of continuity and an integral modulus of continuity holds
true (see [19, p. 18] and the literature cited there, cf. [12]) so that the integral
modulus can be used as a measure of smoothness instead of the averaged
modulus. This could be investigated for abstract functions as well.

The term 2
∫ T

0
‖ut(t)−Ph(ut(t))‖H dt+‖v0−Phv0‖H describes the error of

Ritz projections, i. e. it shows the influence of spaces Vh. Under natural struc-
tural assumptions on the underlying domain (i.e. for open, bounded domains
with Lipschitz boundaries) and for typical finite element spaces Vh this error
can be estimated against moduli of smoothness by well-known K-functional
techniques. Also, the sharpness of such estimates can be established by the
means of resonance principles (cf. [10] and the work of Lüttgens cited there).
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4 Sharpness

In this section, we show that Theorem 3.1 is sharp in the sense of coun-
terexamples. That is, with Theorem 4.1 we prove that for certain rates of
convergence there is a solution of a problem (3.1) such that the error does
not vanish faster than the given rate, but at the same time the right side
in the estimate of Theorem 3.1 is this rate. Our counterexamples are ob-
tained from a quantitative extension of the uniform boundedness principle
(Theorem 4.2). It can handle composed error bounds and is not restricted to
the given application in differential equations. However, one needs a context
specific lower estimate of the approximation error: Here, the main idea is to
express both discrete solutions and the error by the means of discrete Green’s
functions known from the theory of difference schemes (see Lemma 4.4 and
4.5). To establish an analogue to discrete Green’s functions for our setting,
we utilize the properties of certain eigenfunctions belonging to the elliptic
part of the weak problem (cf. (4.16)). For a particular discrete solution we
are able to compute a lower estimate for a seminorm of the discrete Green’s
function (see Lemma 4.6). In turn, this lower estimate can be applied to the
error representation (Lemma 4.5) and it gives the lower bound as required.

In Approximation Theory rates of convergence often are determined by
Lipschitz classes. To this end, an abstract modulus of continuity is a function
ω, continuous on [0,∞) such that, for 0 < δ1, δ2,

0 = ω(0) < ω(δ1) ≤ ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2). (4.1)

Functions ω(δ) := δβ, 0 < β ≤ 1, that are used in Lipschitz classes, satisfy
these conditions.

The main result of this paper is the following proposition.

Theorem 4.1 For each decreasing sequence (γn)
∞
n=1 ⊂ (0, 1] there exists a

strictly decreasing null sequence (δn)∞n=1 such that the error estimate Theorem
3.1 with parameters h = γn and k = δn (thus h and k are coupled) is sharp
in the following sense:

For each abstract modulus of continuity ω satisfying

lim
δ→0+

ω(δ)

δ
= ∞ (4.2)

there exists a counterexample uω ∈ C1([0, T ], V ), that is the solution of a
problem (3.1), such that (δ → 0+, n → ∞, h = γn, k = δn → 0+)

τ1(δ, (uω)t, C([0, T ], H)) = O(ω(δ)), (4.3)
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2

∫ T

0

‖(uω)t(t)−Ph((uω)t(t))‖H dt+‖uω(0)−Phuω(0)‖H = O(ω(k)), (4.4)

max
t∈Zk

‖uω(t) − (uω)k,h(t)‖H 6= o(ω(k)). (4.5)

As mentioned, this result can be obtained as an application of a quanti-
tative version of the uniform boundedness principle. We cite this theorem,
add an extension and then demonstrate how to choose parameters in our
situation.

For a (real) Banach space X with norm ‖ · ‖X let X∼ be the set of non-
negative-valued sublinear bounded functionals T on X, i.e., T maps X into
R such that for all u, v ∈ X, c ∈ R

Tu ≥ 0, T (u + v) ≤ Tu + Tv, T (cu) = |c|Tu,

‖T‖X∼ := sup{Tu : ‖u‖X ≤ 1} < ∞.

Theorem 4.2 (see [3], cf. [5]) Let X be a real Banach space. Suppose that
for a sequence of remainders (Tn)∞n=1 ⊂ X∼, and for a measure of smoothness
{Sδ : δ > 0} ⊂ X∼ there are test elements un ∈ X such that (δ > 0, n → ∞)

‖un‖X ≤ C1 for all n ∈ N, (4.6)

Sδun ≤ C2 min

{

1,
σ(δ)

ϕn

}

for all n ∈ N, δ > 0, (4.7)

lim sup
n→∞

Tnun > 0, (4.8)

where σ(δ) is a function, strictly positive on (0,∞) and (ϕn)
∞
n=1 ⊂ R is a

strictly decreasing sequence with limn→∞ ϕn = 0. Then for each modulus ω
satisfying (4.1) and (4.2), there exists a counterexample

uω =
∞
∑

m=1

ω(ϕnm
)unm

∈ X (4.9)

with
∞
∑

m=j

ω(ϕnm
) ≤ 2ω(ϕnj

),

∞
∑

m=1

ω(ϕnm
)‖unm

‖X < ∞ (4.10)

(where (nm)∞m=1 ⊂ N is strictly increasing) such that (δ → 0+, n → ∞)

Sδuω = O (ω(σ(δ))) , (4.11)

Tnuω 6= o (ω(ϕn)) . (4.12)
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(4.12) is equivalent to the existence of a constant c > 0 such that

lim sup
n→∞

Tnuω

ω(ϕn)
> c > 0.

In our application, the error bound consists of a measure of smoothness
Sδ and a sequence of sublinear bounded functionals (Rn)∞n=1 ⊂ X∼ (cf. (4.4)).
It turns out that these functionals satisfy

‖Rn‖X∼ ≤ C3 for all n ∈ N, (4.13)

Rnuj = 0 for all 0 < j ≤ n, n ∈ N. (4.14)

Under these additional assumptions, the counterexample uω also fulfills (n →
∞)

Rnuω = O(ω(ϕn)). (4.15)

This extension to [3] directly follows from the definition (4.9) of uω, (4.14),
boundedness conditions (4.6) and (4.13), and (4.10):

Rnuω ≤
∞
∑

m=1

ω(ϕnm
)Rnunm

=
∞
∑

m:nm>n

ω(ϕnm
)Rnunm

≤
∞
∑

m:nm>n

ω(ϕnm
)‖Rn‖X∼‖unm

‖X ≤ C1C3

∞
∑

m:nm>n

ω(ϕnm
) ≤ 2C1C3ω(ϕn).

The extension (4.15) is later needed to focus on the error resulting from the
difference in time such that the error in space can be ignored. It might serve
as a more general concept for error bounds that are composed of several
different terms. It allows to proof sharpness restricted to only a subset of
such terms.

Theorem 4.2 encapsulates a gliding hump argument where the hump is
constructed using the resonance condition (4.8). Therefore, finding suitable
resonance elements un is crucial. They should be chosen such that it be-
comes easy to calculate corresponding discrete solutions. To this end, we use
eigenfunctions Ψh of the bilinear form a(·, ·) that has to be symmetric for
following considerations. Heat equation (1.1) is an example, where the weak
formulation makes use of such a symmetric bilinear form.

The norm ‖u‖a :=
√

a(u, u) is equivalent to ‖ · ‖V in V and in finite ele-
ment subspaces Vh ⊂ V . Indeed, (V, a(·, ·)) and (Vh, a(·, ·)) are Hilbert spaces.
For f ∈ Vh the functional f ∗(·) := (f, ·)H ∈ (Vh, (·, ·)V )∗ ∼= (Vh, a(·, ·))∗ can
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be represented by Riesz theorem via a linear operator Th : Vh → Vh that is
uniquely determined by a(Thf, v) = (f, v)H for all f, v ∈ Vh. Th is bounded:

‖Thf‖
2
a = a(Thf, Thf) = (f, Thf)H ≤ ‖f‖H‖Thf‖H

≤ ‖f‖V ‖Thf‖V ≤ C‖f‖a‖Thf‖a.

Th is self adjunct, because a(Thf, v) = (f, v)H = (v, f)H = a(Thv, f) =
a(f, Thv), and positive definite, because for f 6= 0 there is a(Thf, f) =
(f, f)H = ‖f‖2

H > 0. Therefore, operator Th has a real eigenvalue λ−1
h that

equals the operator norm ‖Th‖[Vh,‖·‖a]:

λ−1
h = ‖Th‖[Vh,‖·‖a] := sup

06=v∈Vh

‖Thv‖a

‖v‖a

.

Let Ψh ∈ Vh be an eigenfunction for eigenvalue λ−1
h that is normed such that

‖Ψh‖H = 1. Then

a(Ψh, v) = λha(ThΨh, v) = λh(Ψh, v)H for all v ∈ Vh. (4.16)

Essential for the proof of sharpness via resonance condition (4.8) is that the
set {λh : h ∈ (0, 1]} is bounded:

In our setting there is Vh2
⊂ Vh1

for h1 < h2. Using the Ritz projection
we get Th2

v = Ph2
Th1

v for all v ∈ Vh2
, because Ph2

Th1
: Vh1

→ Vh2
such that

for all f, v ∈ Vh2
there is (cf. (2.5))

a(Ph2
Th1

f, v) = a(Th1
f, v) = (f, v)H = a(Th2

f, v).

We have seen that the Ritz projection is a bounded operator. If one equips
V and Vh with the norm ‖ · ‖a that is equivalent to ‖ · ‖V , then the operator

norm ‖Ph‖[(V,‖·‖a),(Vh,‖·‖a)] := sup06=v∈V
‖Phv‖a

‖v‖a
becomes one. This immediately

follows from Cauchy-Schwarz inequality

‖Phv‖
2
a = a(Phv, Phv) = a(v, Phv) ≤ ‖v‖a‖Phv‖a,

such that ‖Phv‖a ≤ ‖v‖a, whereas both sides are equal for v ∈ Vh. Therefore,
we get

λ−1
h2

= ‖Th2
‖[Vh2

,‖·‖a] ≤ ‖Ph2
‖[(V,‖·‖a),(Vh2

,‖·‖a)]‖Th1
‖[(Vh2

,‖·‖a),(Vh1
,‖·‖a)]

= ‖Th1
‖[(Vh2

,‖·‖a),(Vh1
,‖·‖a)] ≤ ‖Th1

‖[Vh1
,‖·‖a] = λ−1

h1
,
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so that λh1
≤ λh2

≤ λ1 and

0 < max{λh : h ∈ (0, 1]} = λ1. (4.17)

This also implies, that not only ‖Ψh‖H = 1 but ‖Ψh‖V is bounded indepen-
dently of h, because in view of (2.1), (4.16):

‖Ψh‖
2
V ≤

1

c
a(Ψh, Ψh) =

1

c
λh(Ψh, Ψh)H =

λh

c
‖Ψh‖

2
H =

λh

c
≤

λ1

c
. (4.18)

Lemma 4.3 Let Ψh ∈ Vh be the eigenfunction belonging to the eigenvalue
λh in (4.16). We define a function u(t) := g(t)Ψh where g ∈ C1[0, T ], the
space of real-valued, continuously differentiable functions on [0, T ]. Then u
is solution of a problem (3.1) with v0 := u(0) and f(t) = [g′(t) + λhg(t)]Ψh,
i. e. for all v ∈ Vh and t ∈ [0, T ] there is

(ut(t), v)H + a(u(t), v) = [g′(t) + λhg(t)](Ψh, v)H . (4.19)

For each function wk,h(t) = g̃k(t)Ψh : Zk → Vh, g̃k : Zk → R, there holds
true for all v ∈ Vh (j > 0, jk ∈ Zk, v ∈ Vh):

(∂twk,h(jk), v)H + a(wk,h(jk), v) = ∂̂tg̃k(jk)(Ψh, v)H , (4.20)

where we use the abbreviation

∂̂tg(t) = ∂tg(t) + λhg(t) =
g(t) − g(t− k)

k
+ λhg(t). (4.21)

Let uk,h be the discrete solution of (3.2) associated with u. Then uk,h is
the product of a function gk and Ψh with (jk ∈ Zk)

gk(jk) =
1

1 + λhk

(

k[g′(jk)+λhg(jk)]+gk((j−1)k)
)

, gk(0) = g(0). (4.22)

Proof. Both (4.19) and (4.20) directly follow from (4.16). We have to show
that uk,h(t) := gk(t)Ψh indeed is a solution of (3.2). In view of (4.22) function
gk is uniquely determined and (j ∈ N)

(1 + λhk)gk(jk) − gk((j − 1)k) = k[g′(jk) + λhg(jk)],

∂̂tgk(jk) := ∂tgk(jk) + λhgk(jk) = g′(jk) + λhg(jk). (4.23)
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By successively applying (3.1), (4.19), (4.23), and (4.20) we get for all v ∈
V, j ∈ N, jk ∈ Zk:

(f(jk), v)H = (ut(jk), v)H + a(u(jk), v) = [g′(jk) + λhg(jk)](Ψh, v)H

= ∂̂tgk(jk)(Ψh, v)H = (∂tuk,h(jk), v)H + a(uk,h(jk), v).

Additionally, uk,h(0) = gk(0)Ψh = g(0)Ψh = u(0) = v0 so that uk,h is the
unique solution of (3.2).

For our purposes, estimates become easier if we work with resonance
elements of product type u(t) = g(t)Ψ, g : [0, T ] → R, that have discrete
counterparts uk,h(t) = gk,h(t)Ψ with the same element 0 6= Ψ ∈ Vh. If Ψ does
not fulfill eigenfunction condition (4.16) (i. e. there are v1, v2 ∈ Vh, l1, l2 ∈ R,
0 6= l1 6= l2 6= 0, with a(Ψ, v1) = l1(Ψ, v1)H , a(Ψ, v2) = l2(Ψ, v2)H), then a
corresponding discrete solution might not be of same product type: If we
assume that u(t) = t2Ψ has an associated discrete solution uk,h(t) = gk,h(t)Ψ
(gk,h(0) = 0), then for k 6= − 1

l1,2
, v = v1,2, and t = k (cf. (3.2))

1

k
[gk,h(k) − gk,h(0)](Ψ, v)H + gk,h(k)a(Ψ, v) = 2k(Ψ, v)H + k2a(Ψ, v),

gk,h(k) + kgk,h(k)l1,2 = 2k2 + k3l1,2, gk,h(k) = k2

[

1 +
1

1 + kl1,2

]

.

Since l1 6= l2, gk,h(k) is not well-defined. uk,h(t) cannot have product structure
gk,h(t)Ψ. An eigenfunction Ψh2

belonging to Vh2
in the sense of (4.16) might

not be an eigenfunction for Vh1
, h1 < h2. Even if one uses an eigenfunction to

get product structure for uk,h2
(t), then uk,h1

(t) might be not of this structure.
This is the reason why we will use separate eigenfunctions for each space Vh

that will be condensed to one counterexample by the uniform boundedness
principle.

Next, we define an analogue to the discrete Green’s function for discrete
difference schemes that allows an elegant representation of the approximation
error.

For Ψh in (4.16) let Gk,h(t1, t2) : Zk × (Zk \ {0}) → Vh for a fixed t2 be
defined as the unique solution of the problem (cf. solution of (3.2))

([∂tGk,h(·, t2)](t), v)H + a(Gk,h(t, t2), v) =

{

(Ψh, v)H , t = t2
0, t 6= t2

,

Gk,h(0, t2) = 0
(4.24)
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for all v ∈ Vh, 0 < t ∈ Zk. Especially, there is

Gk,h(t, jk) = 0 for all jk > t, jk ∈ Zk \ {0}, t ∈ Zk.

Lemma 4.4 Let wk,h(t) := gk(t)Ψh, wk,h : Zk → Vh, wk,h(0) = 0 (i. e.
gk(0) = 0) with Ψh and λh as defined in (4.16). Then wk,h has the represen-
tation

wk,h(t) =
∑

j∈N,jk≤t

Gk,h(t, jk)[∂̂tgk(jk)] =
∑

j∈N,jk≤t

Gk,h(t, jk)[∂tgk(jk)+λhgk(jk)].

(4.25)

Proof. We denote the right side of (4.25) by r(t). If we put wk,h(t) as well
as r(t) into the left side of (3.2), then we get equality (cf. (4.24), (4.20)):

(∂tr(t), v)H + a(r(t), v) = ∂̂tgk(t)(Ψh, v)H

= (∂twk,h(t), v)H + a(wk,h(t), v)

for all v ∈ Vh, 0 < t ∈ Zk. Additionally, r(0) = 0 = wk,h(0) so that this
proof (like the one before) is completed because of the unique solvability of
(3.2).

We use this discrete Green’s function in the same fashion to write the
error as it is done in [7, 8] for finite difference schemes.

Lemma 4.5 Let Ψh, u, uk,h, g and gk be defined as in Lemma 4.3. Then the
error u − uk,h has the representation (t ∈ Zk)

u(t) − uk,h(t) =
∑

j∈N,jk≤t

Gk,h(t, jk)[∂tg(jk) − g′(jk)]. (4.26)

Proof. Because of u(0) − uk,h(0) = 0 Lemma 4.4 can be used. (4.25) in
connection with (4.23) and (4.21) yields for t ∈ Zk:

u(t) − uk,h(t) =
∑

j∈N,jk≤t

Gk,h(t, jk)[∂̂tg(jk) − ∂̂tgk(jk)]

=
∑

j∈N,jk≤t

Gk,h(t, jk)[∂̂tg(jk) − g′(jk) − λhg(jk)]

=
∑

j∈N,jk≤t

Gk,h(t, jk)[∂tg(jk) − g′(jk)].

We close our preparations with the next lemma that will establish the
lower estimate in the resonance condition (4.8).
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Lemma 4.6 For a given sequence (γn)
∞
n=1 ⊂ (0, 1] of suitable values for

parameter h, there exists a positive strictly decreasing null sequence (δn)∞n=1

(as stated in Theorem 4.1) such that for each h = γn and all 0 < k ≤ δn,
there holds true

max
t∈Zk

∥

∥

∥

∥

∥

∑

j∈N,jk≤t

Gk,h(t, jk)

∥

∥

∥

∥

∥

H

≥ c > 0, (4.27)

where c is independent of n.

Proof. In Lemma 4.3 choose g(t) := 1
λh

[1 − exp(−λht)]. Then g(0) = 0

and therefore u(0) = uk,h(0) = 0. Further g is a solution of the differential
equation g′(t)+λhg(t) = 1. Because of (4.23) and (4.25) the discrete solution
uk,h belonging to u has the representation

uk,h(t) =
∑

j∈N,jk≤t

Gk,h(t, jk).

On a fixed finite element space Vh, h = γn, direct estimate Theorem 3.1 for
V = Vh and u ∈ Vh gives

max
t∈Zk

‖u(t) − uk,h(t)‖H ≤ τ1(k, ut, C([0, T ], H)) → 0 (k → 0+).

This implies that for each n ∈ N (and h = γn) there is a 0 < kn < T/2 such
that for all 0 < k ≤ kn:

max
t∈Zk

‖uk,h(t)‖H ≥
1

2
max
t∈Zk

‖u(t)‖H =
‖Ψh‖H

2
max
t∈Zk

∣

∣

∣

∣

1

λh

[1 − exp(−λht)]

∣

∣

∣

∣

.

Function 1 − exp(−λhx) is increasing and there is an element t ∈ Zk with
t ≥ T/2. Together with ‖Ψh‖H = 1, we conclude

max
t∈Zk

‖uk,h(t)‖H ≥
1

2

1

λh

[1 − exp(−λhT/2)] ≥
1

2λ1
[1 − exp(−λ1T/2)] = c > 0

because 0 < λh ≤ λ1 (cf. (4.17)) and 1
2x

[1 − exp(−xT/2)] > 0 is decreasing
on (0, λ1].

Now (δn)∞n=1 can be chosen as an arbitrary strictly decreasing null se-
quence that fulfills 0 < δn ≤ kn.
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We are prepared to prove the main result of this paper:
Proof of Theorem 4.1. We use the resonance principle 4.2 with following
parameters

X = C1([0, T ], V ), ‖ · ‖X = ‖ · ‖C1([0,T ],V ),

ϕn = δn = k, σ(δ) = δ,

Sδv = τ1(δ, vt, C([0, T ], H)),

Tnv = max
t∈Zk

‖v(t) − vk,h(t)‖H ,

un(t) =
k

2π
sin

(

2π
t

k

)

Ψh ∈ C1([0, T ], Vh) ⊂ C1([0, T ], V ).

Note that functionals Tn are well-defined for each element of v ∈ C1([0, T ], V )
because each v can be seen as a solution of a problem (3.1) with a right side
f ∗

(t) depending on v such that there is a corresponding discrete solution vk,h.

Functionals are sublinear and bounded: Tn, Sδ ∈ (C1([0, T ], V ))∼ because
of Theorem 3.1 (that holds true for right sides f ∗

(t))

Tnv

≤ τ1(k, vt, C([0, T ], H)) + 2

∫ T

0

‖vt(t) − Ph(vt(t))‖H dt + ‖v(0) − Phv(0)‖H

≤ Skv + [1 + ‖Ph‖[V,Vh]]
[

2T‖vt‖C([0,T ],V )+‖v(0)‖V

]

≤ Skv + C‖v‖C1([0,T ],V )

and Sδv ≤ 2T‖v‖C1([0,T ],H) ≤ 2T‖v‖C1([0,T ],V ).
Also, condition (4.6) is fulfilled (cf. (4.18), n → ∞, i. e. k → 0+):

‖un‖C1([0,T ],V ) ≤

[

k

2π
+ 1

]

‖Ψh‖V ≤

[

k

2π
+ 1

]

λ1

c
= O(1).

This directly implies Sδun ≤ 2T‖un‖C1([0,T ],V ) ≤ C. Beyond it, the remaining
part of Jackson-Bernstein type condition (4.7) is fulfilled also:

Sδun =

∫ T

0

[

sup

{
∥

∥

∥

∥

∫ t1

t2

(un)tt(y)dy

∥

∥

∥

∥

H

: t1, t2 ∈ [t − δ, t + δ] ∩ [0, T ]

}]

dt

= ‖Ψh‖H ·

·

∫ T

0

[

sup

{
∣

∣

∣

∣

∫ t1

t2

−
2π

k
sin
(

2π
y

k

)

dy

∣

∣

∣

∣

: t1, t2 ∈ [t − δ, t + δ] ∩ [0, T ]

}]

dt

≤ T2δ
2π

k
= C

δ

k
= C

σ(δ)

ϕn

.

17



It remains to check resonance condition (4.8). With (4.26) and (4.27) we get

Tnun = max
t∈Zk

∥

∥

∥

∥

∥

k

2π
sin

(

2π
t

k

)

Ψh −

(

k

2π
sin

(

2π
t

k

)

Ψh

)

k,h

(t)

∥

∥

∥

∥

∥

H

= max
t∈Zk

∥

∥

∥

∥

∥

∑

j∈N,jk≤t

Gk,h(t, jk)

[

∂t

(

k

2π
sin

(

2π
jk

k

))

− cos

(

2π
jk

k

)]

∥

∥

∥

∥

∥

H

= max
t∈Zk

∥

∥

∥

∥

∥

∑

j∈N,jk≤t

Gk,h(t, jk)

∥

∥

∥

∥

∥

H

≥ c > 0

where c is independent of n. Thus we have shown lim supn→∞ Tnun ≥ c > 0.
To sum up, Theorem 4.2 gives a counterexample uω ∈ C1([0, T ], V ) that

fulfills (4.3) and (4.5). It is a solution of a problem (3.1) where for each t the
right side is a bounded linear functional f ∗

(t)(·) = ((uω)t(t), ·)H +a(uω(t), ·) on
the space V . But the theorem of Hahn-Banach cannot be used to extend the
functional to H since ‖ · ‖H ≤ ‖ · ‖V and not vice versa. Therefore, it is not
immediately clear, that f ∗

(t)(v) = (f(t), v)H, v ∈ V , for a suitable function

f : [0, T ] → H . Nevertheless, this representation holds true because the reso-
nance elements are built on eigenfunctions. To prove it we use the structure
of uω as a sum (4.9) that converges in C1([0, T ], V ) (and in C1([0, T ], H))
such that (

∑∞
m=1 ω(ϕnm

)unm
)
t

=
∑∞

m=1 ω(ϕnm
)(unm

)t. With the abbrevia-

tion gm := ω(ϕnm )
2π

sin
(

2π t
ω(ϕnm )

)

we get (using continuity of inner products

and (4.19))

((uω)t(t), v)H + a(uω(t), v)

=

(

∞
∑

m=1

ω(ϕnm
)(unm

)t(t), v

)

H

+ a

(

∞
∑

m=1

ω(ϕnm
)unm

(t), v

)

=
∞
∑

m=1

ω(ϕnm
) [((unm

)t(t), v)H + a (unm
(t), v)]

=

∞
∑

m=1

ω(ϕnm
)[g′

m(t) + λγnm
gm(t)](Ψγnm

, v)H

=

∞
∑

m=1

ω(ϕnm
)((unm

)t(t) + λγnm
unm

(t), v)H
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=

(

∞
∑

m=1

ω(ϕnm
)
[

(unm
)t(t) + λγnm

unm
(t)
]

, v

)

H

=: (f(t), v)H .

For the last step, where the infinite sum is moved into the continuous inner
product, one needs the convergence of the sum in H (with limit f(t)). The
sum converges because

∥

∥ω(ϕnm
)
[

(unm
)t(t) + λγnm

unm
(t)
]
∥

∥

H
≤ [1 + λ1]ω(ϕnm

)‖unm
‖C1([0,T ],V )

and (see (4.10))
∑∞

m=1[1 + λ1]ω(ϕnm
)‖unm

‖C1([0,T ],V ) < ∞.
Finally, we need to prove (4.4). Sublinear functionals

Rnv := 2

∫ T

0

‖vt(t)−Ph(vt(t))‖H dt+‖v(0)−Phv(0)‖H

are bounded independently of n thus fulfilling (4.13):

Rnv ≤ [1 + ‖Ph‖[V,Vh]]
[

2T‖vt‖C([0,T ],V ) + ‖v‖C([0,T ],V )

]

≤ 2 max{2T, 1}‖v‖C1([0,T ],V ).

Because (γn)∞n=1 is decreasing, there is uj(t), (uj)t(t) ∈ Vγj
⊂ Vγn

= Vh

for each t ∈ [0, T ] and 1 ≤ j ≤ n. Therefore, uj(t) − Phuj(t) = 0 and
(uj)t(t) − Ph((uj)t(t)) = 0, which gives (4.14) such that all prerequisites of
(4.15) hold true. This in turn establishes (4.4) for k = δn.

5 Concluding remarks

Please note that it is not required for (γn)
∞
n=1 to be a null sequence, although

h = γn → 0+ would be the regular setting in applications. Resonance
elements are chosen such that the error regarding the backward difference
dominates the error resulting from the structure of spaces Vh. Especially,
Theorem 4.1 holds true if the sequence is constant, γn = h0 for a fixed h0 ∈ R.
Then all resonance elements have the representation un(t) = gn(t)Ψh0

with
the same eigenfunction Ψh0

∈ Vh0
. This leads to a counterexample that shares

this structure. For this counterexample all terms in the error bound but the
averaged modulus are zero. That shows that, for a semi-discretization where
V = Vh0

, the averaged modulus is a sharp error bound as k → 0+. This part
of the error bound cannot be improved.
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Theorem 4.2 does not allow us to find a counterexample in the case ω(δ) =
δ that is excluded by (4.2). In this situation we only give a counterexample
for a semi-discretization with h = h0, V := Vh0

as discussed before. Thus
we do not couple h and k. We do this for simplicity as we have to explicitly
compute a lower estimate of the error. In this context uω(t) := t2Ψh0

shows
the sharpness, where Ψh0

∈ Vh0
as in (4.16). We apply Lemma 4.5 (t ∈ Zk):

uω(t) − (uω)k,h0
(t) =

∑

j∈N,jk≤t

Gk,h0
(t, jk)

(

(jk)2 − ((j − 1)k)2

k
− 2jk

)

= −k
∑

j∈N,jk≤t

Gk,h0
(t, jk).

The sharpness follows in connection with Lemma 4.6:

max
t∈Zk

‖uω(t) − (uω)k,h0
(t)‖H 6= o(k),

the rate O(δ) of the averaged modulus is obvious.
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