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Abstract Polygons can be seen as closed parameterized curves. Their parameteri-

zations can be chosen as continuous, piecewise linear, periodic functions. Such func-

tions possess a convergent Fourier series. Often polygons are classified with Fourier

descriptors defined via Fourier coefficients of the parameterization. This fact moti-

vates the discussion of the approximation error of Fourier partial sums of piecewise

linear functions. More generally, the paper investigates convergence rates for peri-

odic splines using elementary techniques of calculus. For example, such splines are

used as curve parameterizations for active contours. Error bounds are shown to be

best possible. An interesting effect is that the convergence rate at knots is different

for odd and even degrees of piecewise polynomials. The slower rate for polynomials

of odd degree can be used to detect dominant corners of contours.
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1 Introduction

In the field of pattern recognition, Fourier descriptors [5, 15] are standard features

describing closed contours. They are derived from Fourier coefficients and often are

invariant against scaling, rotation, translation and even shearing. [16] provides an

overview and comparison.
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For practical purposes, closed contours have to be represented by few parameters

based on sampled values. The most elementary approximation to a contour is by a

polygon, i.e. by a curve with a piecewise linear parameterization that can be peri-

odically continued. More generally, periodic splines can be used, see for example

the monographs of Wahba [14, Chapter 2.1], Bojanov [3, pp. 117–131], Berlinet and

Thomas-Agnan [2, Chapter 2.4.2], and de Boor [6, pp. 282–289]. For segmenting or

reproducing shapes, active contours based on periodic splines (also known as snake

splines) are an established means (see [10], [7] gives an overview).

Fourier descriptors often have to be computed on such representations because

the original exact contours are not available due to sampling. Therefore it becomes

interesting to analyze Fourier series of piecewise linear functions, and more gener-

ally, of periodic splines. The better Fourier partial sums represent such splines, the

better Fourier descriptors might represent a corresponding contour.

Spline-based quadrature formulas are used to improve the numerical computa-

tion of Fourier coefficients, see [6, pp. 288–289] and the literature cited there. How-

ever, we start with the spline representation and compute its exact Fourier coeffi-

cients. Those can be seen as numerically computed Fourier coefficients of an un-

known, exact parameterization of a contour curve. Given the exact spline’s Fourier

coefficients, we analyze error bounds for Fourier partial sum approximations of the

splines.

Whereas it might be difficult to exactly compute Fourier coefficients of parame-

terization functions of arbitrary curves, they can easily be obtained for splines (cf.

[13] for polygons), especially if equidistant knots are used (cf. [2, p. 122]). This

allows us to give uniform and point-wise error estimates for the approximation with

finite Fourier partial sums in Section 3. The paper also discusses sharpness of these

estimates in Section 4. It is somewhat surprising that partial sums of splines with

even polynomial degree show a higher rate of convergence at knots than partial

sums of splines with odd polynomial degree. The paper concludes with an appli-

cation: The approximation error of odd degree splines is used to detect dominant

corners.

2 Complex-valued periodic spline parameterizations

Our aim is to discuss approximations of parameterized closed curves in the complex

plane (see Figures 1 and 2). The set of points of a curve can be obtained by an infinite

number of parameterizations (c.f. the discussion in [6, p. 278]). We restrict ourselves

to complex-valued parameterization functions f for which real part Re( f ) and imag-

inary part Im( f ) are real valued, 2π-periodic splines with pairwise different knots

t0, . . . , tm−1 ∈ [0,2π), tm := t0 + 2π , t−1 := tm−1 − 2π . Thus f is a complex-valued,

periodic spline that can be written with polynomials that have complex coefficients

but a real variable. Between knots, the real-valued component splines are polyno-

mials of degree s. We require Re( f ) and Im( f ) to be s− 1-times continuously dif-

ferentiable. For the computation of lower error bounds, we also assume that at each
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knot Re( f ) or Im( f ) is not s-times differentiable, i.e. the complex-valued spline is

not s-times differentiable there.

Polygons with vertices (x0,y0), (x1,y1), . . . , (xm,ym) = (x0,y0), m ≥ 3, can be

parameterized with piecewise linear splines of degree s = 1. For convenience, we

extend the set of vertices m-periodically, i.e. (xr+m,yr+m) = (xr,yr). We require that

no vertex lies on a straight line going through its predecessor and successor. Thus,

subsequent vertices have to be different. If these vertices are the spline’s values at

knots then the spline is not differentiable at the knots.

For example, a parameterization f of the polygon can be obtained by traveling

along the curve with constant speed or by traveling along each edge within the same

time so that speed for longer edges is faster but constant per edge.

For obtaining a parameterization with constant speed, let

lr :=
√

(xr − xr−1)2 +(yr − yr−1)2 > 0

be the length of the r-th edge and

d0 := 0, dr := dr−1 + lr, 1 ≤ r ≤ m,

be the distance from the start point (x0,y0) to (xr,yr) along the edges of the polygon.

Then we define knots

tr :=
2π

dm

dr, 0 ≤ r ≤ m,

and t−1 := tm−1−tm = tm−1−2π . The argument of f is the arc length, normalized to

an overall length of 2π . A constant time per edge parameterization can be obtained

with equally spaced knots

tr := r
2π

m
.

In both cases, the polygon is parametrized for 0 ≤ t < 2π with the piecewise

linear, 2π-periodic spline (1 ≤ r ≤ m, i denotes the imaginary unit)

f (t) := xr−1 + iyr−1 +
[xr + iyr]− [xr−1 + iyr−1]

tr − tr−1
(t − tr−1) for tr−1 ≤ t < tr.

A periodic, complex-valued spline f can be represented by a point-wise conver-

gent Fourier series

f (t) =
∞

∑
k=−∞

ckeikt

with Fourier coefficients ck =
1

2π

∫ π
−π f (t)e−ikt dt. We restrict ourselves to complex

valued functions that parameterize curves in 2D. However, everything can be trans-

ferred to higher dimensions if one separately computes Fourier series of each com-

ponent function.
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3 Error bounds

If one replaces the infinite Fourier sum by a symmetric finite Fourier partial sum

∑M
k=−M ckeikt , then higher frequencies are being cut off. The result is a low pass

filtered version of f that lacks detail, see Figures 1 and 2. We discuss splines f that

are s−1-times continuously differentiable such that f (s−1) is Lipschitz-continuous.

For such functions the Jackson-type estimate

max{|R(t,M)| : t ∈ R} ∈ O

(
log(M)

Ms

)

for the error

R(t,M) := f (t)−
M

∑
k=−M

ckeikt

is well known (see [11, S. 136]). The log-factor originates from the L1-norm of the

Dirichlet kernel. However, due to the restriction to splines, we can easily prove better

uniform and point-wise estimates without log-factor using elementary calculus. The

main tool will be partial summation.

Fig. 1 Left: Fourier partial sum ∑2
k=−2 ckeikt of triangle. Right: Fourier partial sum ∑4

k=−4 ckeikt of

noisy square

Theorem 1. Let f(s) be a s−1-times continuously differentiable, 2π-periodic spline

consisting of piecewise polynomials of degree s with (different) knots tr, 1 ≤ r ≤

m, such that f(1) := f
(s−1)
(s)

is not differentiable at each knot. Then (with standard

Landau symbols O and Ω )

max{|R(t,M)| : t ∈ R} ∈ O

(
1

Ms

)

, (1)

and this order of uniform convergence exactly holds at the knots tr if s is odd:

|R(tr,M)| ∈ Ω

(
1

Ms

)

. (2)

For odd s, the convergence rate at knots tr is bounded by
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Fig. 2 The closed grey curves in the upper two pictures are drawn using a periodic spline pa-

rameterization. The spline has degree s = 2 and m = 4 equidistant knots at which the vertices

(0,0), (1,0), (1,1), and (0,1) of a square are reproduced. The lower two pictures show a section

of a curve in grey. This curve is parameterized by a spline of degree s = 3 and the same m = 4

knots. The black curves are approximations by Fourier partial sums ∑2
k=−2 ckeikt (left column) and

∑4
k=−4 ckeikt (right column), respectively.

|αr|

π

1

(M+1)s
−

C

Ms+1
≤ |R(tr,M)| ≤

|αr|

π

1

Ms
+

C

Ms+1
(3)

where the constant C is independent of M, and

αr :=
f(1)(tr)− f(1)(tr−1)

tr − tr−1
−

f(1)(tr+1)− f(1)(tr)

tr+1 − tr
6= 0. (4)

Especially, if knots are chosen equidistantly (tr = r 2π
m

) then the numerator of αr is

a second difference:

αr =−
f(1)(tr−1)−2 f(1)(tr)+ f(1)(tr+1)

2π
m

. (5)
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For all values of t ∈ [0,2π), t 6= tr for 0 ≤ r < m, convergence is faster:

|R(t,M)| ≤
2s+1

π(s+1)

[
m−1

∑
r=0

|αr|
|t − tr|

1− cos(t − tr)

]

1

Ms+1
. (6)

If s is even, then we also obtain this rate of convergence for knots t = tr0
:

∣
∣R(tr0

,M)
∣
∣≤

2s+1

π(s+1)

[
m−1

∑
r=0,r 6=r0

|αr|
|tr0

− tr|

1− cos(tr0
− tr)

]

1

Ms+1
. (7)

Since f(1) has to be not-differentiable at the knots tr, this function is a 2π-

periodic, piecewise linear parameterization of a polygon for which no vertex lies

on a straight line through its neighbors.

A Riemann-Lebesgue lemma with orders (see [4, p. 168]) shows that spline’s

Fourier coefficients can be asymptotically bounded by 1
Ms+1 which in turn yields

(1). However, the other estimates of the theorem need a different proof.

In the next section we present examples for which the rate 1
Ms+1 is best possible

on a dense set.

Proof. For convenience, we use a basis of 2π-periodic hat functions to repre-

sent piecewise linear function f(1) = f
(s−1)
(s)

. Thus, f0, . . . , fm−1 are defined on

[tr−1, tr−1 +2π) via

fr(t) :=







t−tr−1

tr−tr−1
, tr−1 ≤ t < tr

tr+1−t

tr+1−tr
, tr ≤ t < tr+1

0, tr+1 ≤ t < tr−1 +2π.

Then f(1) can be written as f(1)(t) = ∑m−1
r=0 f(1)(tr) fr(t). With

ck,r :=
1

2π

∫ π

−π
fr(t)e

−iktdt

we denote Fourier coefficients of fr. Then c0,r =
tr+1−tr−1

4π . Using partial integration,

it is easy to compute ck,r for 0 ≤ r < m and k 6= 0:

ck,r =
1

2π

∫ tr

tr−1

t − tr−1

tr − tr−1
e−ikt dt −

1

2π

∫ tr+1

tr

t − tr+1

tr+1 − tr
e−ikt dt

=
1

2π

[
i

k
e−iktr+

1

k2

e−iktr − e−iktr−1

tr − tr−1

]

−
1

2π

[
i

k
e−iktr+

1

k2

e−iktr+1 − e−iktr

tr+1 − tr

]

=
1

2π

1

k2

[
e−iktr − e−iktr−1

tr − tr−1
−

e−iktr+1 − e−iktr

tr+1 − tr

]

.

Fourier coefficients of f(1) are (k 6= 0)
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ck =
m−1

∑
r=0

f(1)(tr)ck,r

=
1

2π

1

k2

m−1

∑
r=0

f(1)(tr)

[
e−iktr − e−iktr−1

tr − tr−1
−

e−iktr+1 − e−iktr

tr+1 − tr

]

=
1

2π

1

k2

[

−
m−2

∑
r=−1

f(1)(tr+1)
e−iktr

tr+1 − tr

+
m−1

∑
r=0

(

f(1)(tr)e
−iktr

tr − tr−1
+

f(1)(tr)e
−iktr

tr+1 − tr

)

−
m

∑
r=1

f(1)(tr−1)
e−iktr

tr − tr−1

]

=
1

2π

1

k2

m−1

∑
r=0

αre
−iktr (8)

with αr as given in (4) due to 2π-periodicity of the functions and t−1 = tm−1 −2π .

Because f(1) is not differentiable at the knots, all

αr 6= 0. (9)

For k 6= 0, iterative calculation of antiderivatives of f(1) to f(s) results in Fourier

coefficients
ck

(ik)s−1 of f(s), k 6= 0 (see [4, p. 172]). Thus we have to estimate the error

|R(t,M)|=

∣
∣
∣
∣
∣

∞

∑
k=M+1

c−k

(−ik)s−1
e−ikt +

ck

(ik)s−1
eikt

∣
∣
∣
∣
∣

=
1

2π

∣
∣
∣
∣
∣

∞

∑
k=M+1

1

ks+1

m−1

∑
r=0

αr[(−1)s−1e−ik(t−tr)+ eik(t−tr)]

∣
∣
∣
∣
∣

(10)

of approximating f(s) with a Fourier partial sum. Obviously,

|R(t,M)| ≤
∑m−1

r=0 |αr|

π

∞

∑
k=M+1

1

ks+1
∈ O

(
1

Ms

)

,

since ∑∞
k=M+1

1
ks+1 ≤

∫ ∞
M

1
xs+1 dx = 1

Ms . This proves the uniform upper bound (1).

To show a higher rate of convergence at points that are different from knots, we

use Abel’s partial summation (cf. [4, p. 51]).

Lemma 1. Let ϕ 6= k2π for all k ∈ Z and (ak)
∞
k=1 be a sequence with

lim
k→∞

ak = 0 and
∞

∑
k=1

|ak −ak+1|< ∞.

For M ∈ N let RM := ∑∞
k=M+1 akeiϕk, then
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RM =
∞

∑
k=M+1

(eiϕ)M+1 − (eiϕ)k+1

1− eiϕ
[ak −ak+1], (11)

|RM| ≤
2

|1− eiϕ |

∞

∑
k=M+1

|ak −ak+1|. (12)

Proof. Since eiϕ 6= 1, we can compute the following geometric sum for l > M:

∑l
k=M+1(e

iϕ)k = (eiϕ )M+1−(eiϕ )l+1

1−eiϕ . Using Abel’s partial summation, we obtain

s

∑
k=M+1

ak(e
iϕ)k = as

s

∑
k=M+1

(eiϕ)k +
s−1

∑
k=M+1

[
k

∑
j=M+1

(eiϕ) j

]

[ak −ak+1]

= as

(eiϕ)M+1 − (eiϕ)s+1

1− eiϕ
+

s−1

∑
k=M+1

(eiϕ)M+1 − (eiϕ)k+1

1− eiϕ
[ak −ak+1].

The limit s → ∞ gives (11). This directly implies the upper estimate (12) because

|(eiϕ)M+1 − (eiϕ)k+1| ≤ 2. ⊓⊔

To continue the proof of Theorem 1, we apply (11) to sums of the following type:

∣
∣
∣
∣
∣

∞

∑
k=M+1

ak[(−1)s−1e−iϕk + eiϕk]

∣
∣
∣
∣
∣

≤
∞

∑
k=M+1

∣
∣
∣(−1)s−1[1− eiϕ ][e−iϕ(M+1)− e−iϕ(k+1)]

+[1− e−iϕ ][eiϕ(M+1)− eiϕ(k+1)]
∣
∣
∣

|ak −ak+1|

|[1− eiϕ ][1− e−iϕ ]|

=
∞

∑
k=M+1

∣
∣
∣(−1)s−1e−iϕ(M+1)+ eiϕ(M+1)− (−1)s−1e−iϕ(k+1)− eiϕ(k+1)

−(−1)s−1e−iϕM+− eiϕM +(−1)s−1e−iϕk + eiϕk
∣
∣
∣
|ak −ak+1|

2−2cos(ϕ)
.

If s is even, the left factor in the sum is

2|sin(ϕ(M+1))− sin(ϕM)− sin(ϕ(k+1)))+ sin(ϕk)|,

for odd s we get

2|cos(ϕ(M+1))− cos(ϕM)− cos(ϕ(k+1)))+ cos(ϕk)|.

By applying the mean value theorem to the differences, we obtain in both cases

∣
∣
∣
∣
∣

∞

∑
k=M+1

ak[(−1)s−1e−iϕk + eiϕk]

∣
∣
∣
∣
∣
≤

2|ϕ|

1− cos(ϕ)

∞

∑
k=M+1

|ak −ak+1|. (13)
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If we choose ak =
1

ks+1 then (13) becomes

∣
∣
∣
∣
∣

∞

∑
k=M+1

1

ks+1
[(−1)s−1e−iϕk + eiϕk]

∣
∣
∣
∣
∣
≤

2|ϕ|

1− cos(ϕ)

∞

∑
k=M+1

∑s
λ=0

(
s+1
λ

)
kλ

ks+1(k+1)s+1

≤
2s+2|ϕ|

1− cos(ϕ)

∞

∑
k=M+1

1

k2s+2−s
≤

2s+2|ϕ|

1− cos(ϕ)

∫ ∞

M

1

xs+2
dx =

2s+2|ϕ|

1− cos(ϕ)

1
s+1

Ms+1
.

(14)

We apply this to (10), compute a common denominator and obtain (6). For even

s this also gives (7) because for t = tr the r-th summand in (10) results in zero due

to

(−1)s−1e−ik(t−tr)+ eik(t−tr) =−1+1 = 0.

This is the reason why partial sums of periodic splines of even degree have a higher

convergence rate at knots. The other summands can be estimated as previously done.

Using (6), we can also prove (2) for odd s: Let t = tr0
for 0 ≤ r0 < m. According

to (10) we estimate the error |R(tr0
,M)| by |R(tr0

,M)| ≥ S1 −S2 with

S1 :=

∣
∣
∣
∣
∣

1

2π

∞

∑
k=M+1

αr0

ks+1
[(−1)s−1e−ik(tr0

−tr0
)+eik(tr0

−tr0
)]

∣
∣
∣
∣
∣
=

|αr0
|

π

∞

∑
k=M+1

1

ks+1
,

where ∑∞
k=M+1

1
ks+1 ≥

∫ ∞
M+1

1
xs+1 = s

(M+1)s ≥ s
(2M)s and |αr0

| > 0, see (9). On the

other side, equation (14) for ϕ := tr0
− tr shows that

S2 :=

∣
∣
∣
∣
∣

1

2π ∑
r∈{0,...,m−1}\{r0}

αr

∞

∑
k=M+1

1

ks+1
[(−1)s−1e−ik(tr0

−tr)+ eik(tr0
−tr)]

∣
∣
∣
∣
∣

≤
1

Ms+1
·

1

2π ∑
r∈{0,...,m−1}\{r0}

|αr|
2s+2|tr0

− tr|
1

s+1

1− cos(tr0−tr)
=:

C

Ms+1

so that the error has a lower bound

|R(tr0
,M)| ≥

|αr0
|s

2sπ

1

Ms
−

C

Ms+1
,

i. e. we have shown (2). For odd s, we especially have S1−S2 ≤ |R(tr0
,M)| ≤ S1+S2

with
|αr0

|

π

1

(M+2)s
≤ S1 :=

|αr0
|

π

∞

∑
k=M+1

1

ks+1
≤

|αr0
|

π

1

Ms

and S2 ≤
C

Ms+1 so that, completing the proof of Theorem 1, (3) follows. ⊓⊔



10 Steffen Goebbels

4 Sharpness

Theorem 1 provides uniform error bounds with order 1/Ms. But (6) cannot be used

to obtain a uniform bound with rate 1/Ms+1 because

lim
t→tr

|t − tr|

1− cos(t − tr)
= ∞.

In fact, estimate (6) (including (7) for even s) cannot be improved to become a

uniform error bound with order 1/Ms+1:

Theorem 2. Under the assumptions of Theorem 1, a uniform bound

max{|R(t,M)| : t ∈ [0,2π), t 6= tr,0 ≤ r < m} ≤
C0

Ms+α

with a constant C0 independent of M does not hold true for any α > 0.

Proof. For odd s, the proof is obvious, because for each M the error R(t,M) is

continuous in t: For ε = 1/Ms+α and a knot tr there exists a tε (that is not a knot)

with |R(tr,M)−R(tε ,M)| ≤ 1
Ms+α . If we assume a uniform bound to exist, then we

can apply it for t = tε and get

|R(tr,M)| ≤ |R(tε ,M)|+ |R(tr,M)−R(tε ,M)| ≤
C0 +1

Ms+α
,

which contradicts (2).

The non-existence of a uniform bound for odd s also implies the non-existence

of such a bound for even s. Without restriction let 0 < α < 2. For given f(s), s even,

we define

f(s+1)(t) :=−t

∫ 2π
0 f (s)(u)du

2π
+

∫ t

0
f(s)(u)du

as a spline of odd degree s+1, i.e. f ′(s+1) = f(s)−
1

2π

∫ 2π
0 f (s)(u)du. With R(t,M, f(s))

and R(t,M, f(s+1)) we denote the partial sum error functionals of the two splines.

Then

d

dt
R(t,M, f(s+1)) = f ′(s+1)(t)−

M

∑
k=−M

ikckeikt

= f(s)(t)−
1

2π

∫ 2π

0
f (s)(u)du−

M

∑
k=−M,k 6=0

ikckeikt = R(t,M, f(s)), (15)

where ck are Fourier coefficients of f(s+1), and ikck, k 6= 0, are Fourier coefficients

of f(s). We assume that a uniform error bound

max
{∣
∣R(t,M, f(s))

∣
∣ : t ∈ [0,2π), t 6= tr,0 ≤ r < m

}
≤

C0

Ms+α
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holds and contradict this assumption. For tM ∈
(

tr −
tr−tr−1

2
, tr +

tr+1−tr
2

)

\{tr} with

|tr − tM|< 1/M1− α
2 there exists a ξ between tr and tM such that (see (6), (15))

|R(tr,M, f(s+1))| ≤ |R(tM,M, f(s+1))|+ |R(tr,M, f(s+1))−R(tM,M, f(s+1))|

≤
C1

Ms+2
+

|tM − tr|

1− cos(tM − tr)

C2

Ms+2
+ |tM − tr|

∣
∣R′(ξ ,M, f(s+1))

∣
∣

≤
C1

Ms+2
+

1

M
1− α

2

1− cos(tM − tr)

C2

Ms+2
+

1

M1− α
2

∣
∣R(ξ ,M, f(s))

∣
∣

≤
C1

Ms+2
+

1

1− cos(tM − tr)

C2

Ms+3− α
2

+
1

M1− α
2

C0

Ms+α
.

Taylor expansion of 1− cos(tM − tr) has a lowest order term 1
2
(tM − tr)

2 so that
1

1−cos(tM−tr)
∈ O(M2−α). Thus |R(tr,M, f(s+1))| is bounded by C3/Ms+1+ α

2 uni-

formly. This contradicts (2) for degree s+1. ⊓⊔

The rest of this section deals with construction of counter examples to show that

the point-wise convergence rate 1
Ms+1 of Theorem 1 is best possible. A standard

technique in Approximation Theory is to prove existence of counter examples with

the uniform boundedness principle (see [8]). However, this requires a Banach space.

Therefore, the approach is not suitable for our simple function spaces of splines.

We explicitly define counter examples based on regular polygons. Compared with

arbitrary periodic splines, convergence rates of their Fourier partial sums should be

quite good because regular polygons approximate the unit circle. But it turns out,

that rates are not better than 1
Ms+1 .

Lemma 2. Let (RM)∞
M=1 be a sequence of continuous, real functions RM : [a,b]→R

and D a dense set in [a,b]. If a common constant c > 0 exists such that

limsup
M→∞

RM(t)> c for each t ∈ D

then

limsup
M→∞

RM(t)≥ c for each t ∈ [a,b].

Proof. Let ε ∈R, 0 < ε < c. For each u ∈ D a (potentially different) strictly increas-

ing sequence (Mu, j)
∞
j=1 ⊂ N exists such that RMu, j(u) > c for all j ∈ N. Due to the

continuity of each RMu, j there exist δMu, j > 0 such that

|RMu, j(t)−RMu, j(u)|< ε for all t ∈ (u−δMu, j ,u+δMu, j)∩ [a,b],

RMu, j(t)≥ RMu, j(u)−|RMu, j(t)−RMu, j(u)| ≥ c− ε . (16)

For each t ∈ [a,b] we iteratively construct (M̃t,n)
∞
n=1 ⊂ N as a strictly increasing

sequence such that

RM̃t,n
(t)> c− ε . (17)
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Since ε > 0 can be chosen arbitrarily, this proves the lemma. We use a helper se-

quence (an)
∞
n=1 starting with a1 := 0. Now we iteratively define next elements. The

n-th step of the iteration (which begins with n = 1) constructs M̃t,n for each t and

defines an+1:

For each u ∈ D the sequence (Mu, j)
∞
j=1 ⊂ N is strictly increasing so that there

exists a ju,n ∈ N with Mu, ju,n > an and RMt, ju,n
(t)≥ c− ε for all t ∈ (u−δMu, ju,n

,u+

δMu, ju,n
)∩ [a,b]. The open sets (u− δMu, ju,n

,u+ δMu, ju,n
), u ∈ D, are an open cover

of [a,b]. According to the theorem of Heine and Borel, a finite subcover U1 :=
(u1 −δMu1, ju1,n

,u1 +δMu1, ju1,n
), . . . ,Ukn

:= (ukn
−δMukn

, jukn
,n
,ukn

+δMukn
, jukn

,n
) exists.

Each t ∈ [a,b] is element of (at least) one of these intervals. Let Ul be the first

interval (in the order of the previous list) that covers t. Then we set M̃t,n := Mul , jul ,n

and according to (16) we have RM̃t,n
(t)> c− ε . Thus we have selected suitable M̃t,n

for each t ∈ [a,b].
For the next iteration we define an+1 := max{Mul , jul ,n

: 1 ≤ l ≤ kn}. This ensures

that in the next iteration M̃t,n+1 > M̃t,n will be selected for each t ∈ [a,b]. We get

strictly increasing sequences (M̃t,n)
∞
n=1 that fulfill (17). ⊓⊔

With the help of this Lemma, we prove the main result of the section.

Theorem 3. Let a regular polygon with vertices xr+ iyr = eir 2π
m and a corresponding

piecewise linear parameterization f (s−1) with equidistant knots tr = r 2π
m

be given

(see Section 2).

Let f be a periodic spline with piecewise polynomials of degree s such that

f (s−1) is the s − 1-th derivative of f . Such a function f can be obtained by it-

erative computation of antiderivatives of f (s−1) as previously described: Since
∫ 2π

0 f (s−1)(t)dt = 0, function f (s−2)(t) := c+
∫ t

0 f (s−1)(u)du is 2π-periodic. Then

let f (s−3)(t) := c− t
∫ 2π

0 f (s−2)(u)du

2π +
∫ t

0 f (s−2)(u)du, etc.

For these counter examples, estimate (6) is best possible in the sense of

|R(t,M)| 6= o

(
1

Ms+1

)

for all t ∈ [0,2π) (18)

i.e. for each t ∈ [0,2π) there holds true

limsup
M→∞

Ms+1 |R(t,M)|> 0.

Due to properties of Fourier coefficients, scaling, rotation and translation of a

polygon (case s = 1) does not change the result. Thus sharpness is established espe-

cially for parameterizations of all regular polygons.

Proof. The outline of the proof is as follows: We first simplify formulas for arbitrary

splines with respect to the counter examples of the theorem. For odd s, sharpness at

knots tr follows from (2). For even s we give an explicit estimate (21) for the knots

as well as an explicit bound (23) for midpoints between knots. Then, with Ds :=
{ 2π

m
p
q

:
p
q
∈ Q,0 < p

q
< 1}, we prove sharpness for each small δ , 0 < δ < π

2m
on a
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set Ds :=D∩ [δ , 2π
m
−δ ] if s is odd and on intervals Ds :=D∩ [δ , π

m
−δ ] and D∩ [ π

m
+

δ , 2π
m
− δ ] if s is even. Without restriction, we only investigate Ds in the even case

because the proof is not different for D∩ [ π
m
+ δ , 2π

m
− δ ]. The next step is to apply

Lemma 2 to extend the sharpness result to the intervals [δ , 2π
m
−δ ] and [δ , π

m
−δ ]∪

[ π
m
+δ , 2π

m
−δ ], respectively. Since δ can be chosen arbitrarily, sharpness follows for

all t in
(
0, 2π

m

)
or
(
0, π

m

)
∪
(

π
m
, 2π

m

)
. In the same manner, sharpness can be shown for

all sets
(
r 2π

m
,(r+1) 2π

m

)
or
(
r 2π

m
,
(
r+ 1

2

)
2π
m

)
∪
((

r+ 1
2

)
2π
m
,(r+1) 2π

m

)
, 0 ≤ r < m.

Together with estimates for knots and midpoints, this is (18).

Fourier coefficients
ck

(ik)s−1 , k 6= 0, of f can be simplified, see (8), (5):

ck =
1

2π

1

k2

m−1

∑
r=0

m

2π

[

−ei(r−1) 2π
m +2eir 2π

m −ei(r+1) 2π
m

]

e−ikr 2π
m

=
m

(2π)2

1

k2

[

2− e−i 2π
m − ei 2π

m

]m−1

∑
r=0

e−i(k−1)r 2π
m .

If k−1 is no multiple of m, then e−i(k−1) 2π
m 6= 1, and

m−1

∑
r=0

e−i(k−1)r 2π
m =

1− e−i(k−1)2π

1− e−i(k−1) 2π
m

= 0.

Thus for j ∈ N0 := {0,1,2, . . .}

ck =







m2

(2π)2
1
k2

[

2− e−i 2π
m − ei 2π

m

]

︸ ︷︷ ︸

≥0

, k =± jm+1,

0, else.

We have to consider j ∈ N that fulfill jm+1 ≥ M+1 ⇐⇒ j ≥ M
m

and − jm+1 ≤

−M−1 ⇐⇒ j ≥ M+2
m

. Let M+2 be a multiple of m > 2. Then each inequality is

exactly fulfilled for j ≥ M+2
m

.

|R(t,M)| =

∣
∣
∣
∣
∣

∞

∑
k=M+1

c−k

(−ik)s−1
e−ikt +

ck

(ik)s−1
eikt

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∞

∑
j=M+2

m

c− jm+1

(− jm+1)s−1
ei(− jm+1)t +

c jm+1

( jm+1)s−1
ei( jm+1)t

∣
∣
∣
∣
∣
∣

= C

∣
∣
∣
∣
∣
∣

∞

∑
j=M+2

m

e−i jmt

(− jm+1)s+1
+

ei jmt

( jm+1)s+1

∣
∣
∣
∣
∣
∣

(19)

=: C|S| ≥C max{|Re(S)|, | Im(S)|} (20)

with a constant
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C :=
m2

(2π)2

[

2− e−i 2π
m − ei 2π

m

]

|eit |
︸︷︷︸

=1

=
2m2

(2π)2

[

1− cos

(
2π

m

)]

> 0.

At this point we deal with arguments t that are multiples of π
m

for even s. They

have to be excluded in later considerations. For even s and knots tr = r 2π
m

we obtain

a lower bound from (19) similar to previous estimates:

|R(tr,M)| = C

∣
∣
∣
∣
∣
∣

∞

∑
j=M+2

m

−1

( jm−1)s+1
+

1

( jm+1)s+1

∣
∣
∣
∣
∣
∣

= C

∣
∣
∣
∣
∣
∣

∞

∑
j=M+2

m

−2∑
s
2

λ=0

(
s+1
2λ

)
( jm)2λ

(( jm)2 −1)s+1

∣
∣
∣
∣
∣
∣

6= o

(
1

Ms+1

)

. (21)

Using partial summation (see (12)), we find for even s at the midpoints t = r 2π
m
+ π

m

between knots for the values M = lm−2, l ∈ N, that

|R(t,M)| = C

∣
∣
∣
∣
∣
∣

∞

∑
j=M+2

m

−2ei jπ ∑
s
2

λ=0

(
s+1
2λ

)
( jm)2λ

(( jm)2 −1)s+1

∣
∣
∣
∣
∣
∣

≤ C̃
1

Ms+2
. (22)

But if we estimate the error for M replaced by M + 1 = lm− 1 then we loose the

summand −Cei M+2
m π

(M+1)s+1 = C(−1)lm+1

(M+1)s+1 . Because of (22) we get sharpness ad midpoints t:

|R(t,M+1)| ≥
C

(M+1)s+1
−C̃

1

Ms+2
, (23)

i.e. |R(t,M+1)| 6= o
(

1
(M+1)s+1

)

.

Now we continue to estimate (20) to obtain estimates for all other points. For odd

s we give a lower bound of |Re(S)|, and for even s we estimate | Im(S)|. Thus, for

odd s we receive

Re(S) =
∞

∑
j=M+2

m

cos( jmt)

[
1

(−jm+1)s+1
+

1

( jm+1)s+1

]

=
∞

∑
j=M+2

m

cos( jmt)
( jm+1)s+1 +( jm−1)s+1

(( jm)2 −1)s+1
.

For all t 6= tr we continue:
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Re(S) = Re





∞

∑
j=M+2

m

ei jmt ( jm+1)s+1 +( jm−1)s+1

(( jm)2 −1)s+1





= Re




1

1− eimt

∞

∑
j=M+2

m

[ei(M+2)t−eim( j+1)t ]h( j)



 (24)

due to (11) with

h( j) :=
( jm+1)s+1 +( jm−1)s+1

(( jm)2 −1)s+1
−

(( j+1)m+1)s+1 +(( j+1)m−1)s+1

((( j+1)m)2 −1)s+1
.

If one uses a common denominator, the highest power of j in the numerator is 3s+2

with a coefficient 2(s+1)m3s+3. The highest power of the denominator is 4s+4 with

coefficient m4s+4. Asymptotically, h( j) behaves like
2(s+1)
ms+1

1
js+2 .

For even s, we also get (24) but with Re replaced by Im. Also, for odd and even

s we can show with (12) that for a constant C0, independent of t and M,

1

|1− eimt |

∣
∣
∣
∣
∣
∣

∞

∑
j=M+2

m

eim( j+1)th( j)

∣
∣
∣
∣
∣
∣

≤
C0

|1− eimt |2
1

Ms+2
. (25)

Thus it is sufficient for odd s to find a lower bound for
∣
∣
∣
∣
∣
∣

Re




ei(M+2)t

1− eimt

∞

∑
j=M+2

m

h( j)





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

Re




ei(M+2)t(1− e−imt)

(1− eimt)(1− e−imt)

∞

∑
j=M+2

m

h( j)





∣
∣
∣
∣
∣
∣

=
codd(M)

2−2cos(mt)

∣
∣
∣
∣
∣
∣

∞

∑
j=M+2

m

h( j)

∣
∣
∣
∣
∣
∣

with

codd(M) := |cos((M+2)t)(1−cos(mt))−sin((M+2)t)sin(mt)|

= |cos(lmt)(1−cos(mt))−sin(lmt)sin(mt)|

for a number l ∈ N.

If s is even, we have to estimate

∣
∣
∣
∣
∣
∣

Im




ei(M+2)t

1− eimt

∞

∑
j=M+2

m

h( j)





∣
∣
∣
∣
∣
∣

=
ceven(M)

2−2cos(mt)

∣
∣
∣
∣
∣
∣

∞

∑
j=M+2

m

h( j)

∣
∣
∣
∣
∣
∣

with

ceven(M) = |sin(lmt)(1− cos(mt))+ cos(lmt)sin(mt)|.



16 Steffen Goebbels

Since

∣
∣
∣∑∞

j=M+2
m

h( j)
∣
∣
∣ ∈ Ω

(
1

Ms+1

)

, it remains to show codd/even(M) 6= o(1), i.e.

codd/even(lm−2) 6= o(1), l → ∞, for the points t under consideration.

Now we focus on t ∈ Ds. For each such t = 2π
m

p
q

we discuss an individual subse-

quence of Ml = lm−2 such that l is a multiple of q. Then for all such l:

|cos(lmt)(1− cos(mt))− sin(lmt)sin(mt)|

=

∣
∣
∣
∣
cos(2π)

(

1−cos

(

2π
p

q

))

−sin(2π)sin

(

2π
p

q

)∣
∣
∣
∣
=

(

1−cos

(

2π
p

q

))

> (1− cos(mδ )) =: c0 > 0.

This also holds for
p
q
= 1

2
. But we have to exclude this value for even s, that is why

Ds is defined differently.

|sin(lmt)(1− cos(mt))+ cos(lmt)sin(mt)|

=

∣
∣
∣
∣
sin(2π)

(

1−cos

(

2π
p

q

))

+cos(2π)sin

(

2π
p

q

)∣
∣
∣
∣
=

∣
∣
∣
∣
sin

(

2π
p

q

)∣
∣
∣
∣

> sin(mδ ) =: c1 > 0.

For t ∈ Ds, factor
C0

|1−eimt |2
in (25) is bounded by C1 := C0

|1−eimδ |2
. Constants C1, c0,

and c1 are all independent of t ∈ Ds, but subsequences of Ml do depend on t and are

now denoted by (Mt, j)
∞
j=1. Thus

∣
∣R(t,Mt, j)

∣
∣≥

c

Ms+1
t, j

for each t ∈ Ds

with a constant c that is dependent on δ but independent of t. Therefore, we can

apply Lemma 2 with [a,b] := [δ , 2π
m
−δ ] or [a,b] := [δ , π

m
−δ ], [a,b] := [ π

m
+δ , 2π

m
−

δ ] and RM(t) := |R(t,M)|
Ms+1 to obtain the result. ⊓⊔

Since we only work with a subsequence of values M, we cannot follow that the

error is in Ω
(

1
Ms+1

)

. Such a lower bound cannot be expected, because the low pass

filtered curve intersects with the spline, see Figure 1. The error might become zero

at certain points for the given M.

It is not possible to extend Theorem 3 from regular to arbitrary polygons. For

example, the Fourier partial sums of an odd, real-valued, periodic function only

consist of sine wave summands. At t = 0 both function and partial sums are zero,

the error vanishes, see Figure 3.

5 Conclusion and Application

We have given bounds for the approximation of periodic splines by Fourier partial

sums and have shown their sharpness. However, Theorem 3 covers parameteriza-
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Fig. 3 Starting at the origin, the polygon can be parameterized by a function f with odd compo-

nent functions Re( f ) and Im( f ). Similar to the counter examples of Theorem 3, equidistant knots

can be used at which the parameterization is not differentiable. Also, the parameterization can be

translated such that t0 = 0 is a knot. Then, at the translated origin, the approximation error of all

Fourier partial sums is zero.

tions based on regular polygons only. It remains open under which more general

assumptions sharpness |R(t,M)| 6= o
(

1
Ms+1

)

at all points t 6= tr holds true.

Since the functions are not arbitrarily often differentiable at knots, their spectrum

is not bounded. Especially the approximation at knots requires high frequencies.

Thus it is somewhat surprising that the rate of convergence at knots for even degree

splines is not worse than at other points. On the other hand, the slower convergence

Fig. 4 Footprint polygons are simplified according to the Fourier partial sum approximation error

in knots. Iteratively, the vertex with best approximation is removed until the polygon’s area falls

below a threshold value. In addition to merging roof facets, this method is used to reduce the level

of detail in the 3D city model.

rate at knots for odd degree splines f can be utilized to define dominant corners of

contours that are represented as polygons or splines. According to (3), the size of

the error at a knot tr is determined by |αr|. In case of an equidistant parameterization

f (s−1) of a polygon, the second difference in (5) can be interpreted as the sum

(xr−1,yr−1)− (xr,yr)+(xr+1,yr+1)− (xr,yr)
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of the two edge vectors, scaled by − m
2π (cf. Section 2). Let l1 := |(xr−1,yr−1)−

(xr,yr)|, l2 := |(xr+1,yr+1)− (xr,yr)|, and 0 ≤ γ ≤ π the angle between the two

edges. Then the cosine theorem allows understanding the role of αr:

4π2

m2
|αr|

2 = l2
1 + l2

2 −2l1l2 cos(π − γ).

Asymptotically, the error becomes large for large edges and small angles γ . Such

vertices appear to be rather dominant and more important for recognition of contours

than others. If one uses a constant speed parameterization (see Section 2), then vec-

tors become normed, and |αr| only depends on the angle: |αr|
2 = 2−2cos(π − γ).

Literally hundreds of methods for dominant corner detection exist either based

on grey values of images or extracted contours. For contour-based methods, [1] and

[9, Sections 3 and 4] give an overview. Common is a smoothing step that removes

noise. When using the approximation error at knots as a measure for dominance, we

obtain ”better” results than when directly using |αr| as measure: The right picture

in Figure 1 shows larger errors at the four edges of the underlying square although

all |αr| are equal. Fourier low-pass filtering removes noise. Higher order terms in

(3) contribute to this effect. Fourier partial sums represent global approximations of

curves’ shapes. In contrast to this, lengths and angles of edges are local features. A

large distant to the global approximation of a shape especially indicates a dominant

edge. A related local corner detector is described in [12]. It applies a wavelet decom-

position to the boundary curve and looks for large wavelet coefficients that describe

local changes. By omitting corresponding terms of the inverse wavelet transform,

the approximation error will also become large.

An application of our partial-sum-based dominant corner detector is shown in

Figure 4: All non-dominant corners were removed from a 3D city model to reduce

the level of detail.
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