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1 Introduction

A trained neural network represents a function that maps input values to an
output value. The function depends on parameters called weights and biases,
which are determined in a learning phase. In supervised learning, the target
outputs belonging to sample input values are given. Training then consists of
minimizing the differences between the network output and the target output,
often by applying gradient descent (back-propagation). Neural networks are
thus in principle able to reconstruct functions from sample values within cer-
tain error bounds. The error is composed from approximation, optimization
and generalization errors. Instead of finding optimal network weights and bi-
ases in the learning phase, gradient descent can lead to local optima and hence
optimization errors. Since the network is trained only on sample data, it may
compute undesirable outputs when applied to other data. Then it does not
generalize. This error is also known as overfitting. However, the paper focuses
on the approximation error and not on aspects of network learning, i.e., it
focuses on the ability to approximate a function by the space of all functions
that can be realized with the network by varying weights and biases. Already
function spaces belonging to single layer neural networks can be used to ap-
proximate continuous functions arbitrary well. This is known as the universal
approximation property, see [3,6,10,11]. Associated rates of convergence have
also been studied by many authors. Although the strength of approximation
with neural network lies in their non-linearity, moduli of continuity or smooth-
ness have nevertheless been proven to be suitable to express these convergence
rates, see the literature overviews in [7,12].

For x ∈ Rd let ‖x‖2 :=
√

∑d
k=1 x

2
k be the 2-norm. Let a real-valued con-

tinuous function f on [0, 1]d be given, i.e., f ∈ C([0, 1]d). The modulus of
continuity is defined via first order differences:

ω(f, δ) := max{|f(x)− f(y)| : x,y ∈ [0, 1]d, ‖x− y‖2 ≤ δ}.

For the properties of this modulus see, e.g., [9].
In this paper, deep ReLU-activated neural networks with d real input

values, (at most) L̃ hidden layers and Ñk neurons in the hidden layer k ∈
{1, . . . , L̃} are discussed. The well-known ReLU (Rectified Linear Unit) acti-
vation function σ is defined as

σ(x) :=

{

0, x < 0
x, x ≥ 0.

Although non-differentiable in x = 0, the computational simplicity makes the
ReLU function σ the standard activation function in most current deep neural
network applications.

The activation function σ is applied component-wise to a column vector,
i.e.,

σ
(

(x1, x2, . . . )
!) := (σ(x1),σ(x2), . . . )

!.
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Let Ñ0 := d and ÑL̃+1 := 1. Each layer k has a real-valued weight matrix

Wk ∈ RÑk,Ñk−1 , with Ñk rows and Ñk−1 columns, and a bias vector bk ∈ RÑk

with Ñk components in one column. Additionally, WL̃+1 ∈ R1,ÑL̃ represents
weights of the output layer and the only component of bL̃+1 is the bias to be
added to the output value. Thus, the paper is restricted to networks that realize
a real-valued and not a vector-valued function. Let x ∈ Rd be an input vector,
then the network computes the function value in yL̃+1 := WL̃+1yL̃ + bL̃+1

from input x ∈ Rd via (1 ≤ k < L̃)

y1 := σ (W1 · x+ b1) , yk+1 := σ (Wk+1 · yk + bk+1) . (1)

The following error bound is proved in [12]: For each function f ∈ C([0, 1]d),
and each choice of N,L ∈ N := {1, 2, . . . }, there exists a function Φ given
by a ReLU-activated neural network with d input nodes, at most N̂(N) :=
3d+3 max{d& d

√
N(, N+2} neurons per hidden layer and at most L̂(L) := 11L+

18 + 2d hidden layers such that

‖f − Φ‖∞ := sup{|f(x)− Φ(x)| : x ∈ [0, 1]d}

≤ 131
√
d · ω

(

f,
1

d
√

N2L2 log3(N + 2)

)

. (2)

Thus, parameters N and L are used to specify the maximum number N̂
of hidden neurons per layer and the maximum number L̂ of hidden lay-
ers, respectively. Based on the VC dimension, the bound is shown to be
best possible in [12] for certain fixed choices of L and N . This is possi-
ble because of the logarithm in the denominator of the modulus parameter
δ = ( d

√

N2L2 log3(N + 2))−1. This logarithm also occurs in VC dimension
estimates but is difficult to obtain in direct estimates.

Shen et al. also provide bounds for Lp norms of the error in [12], but these
errors are estimated against a sup-norm modulus of continuity rather than an
Lp modulus. Therefore, only sup-norms are considered in what follows.

In the next sections, parameters L and N are coupled and the existence
of counterexample functions is proved for which the convergence order de-
termined by the modulus of continuity in (2) cannot be improved in terms
of a little-o estimate. This is done on the basis of an existing VC dimen-
sion estimate combined with a quantitative uniform boundedness principle
that condenses a counterexample from a series of test functions. Quantita-
tive extensions of the uniform boundedness principle (known from Functional
Analysis) and their applications to Approximation Theory and Fourier Anal-
ysis were the subject of a research group at the institute of Paul Butzer at
RWTH in Aachen. The group consisted over time of Rolf Nessel and Werner
Dickmeis, as well as various graduate students, including Erich van Wickeren,
Herbert Mevissen, Bernhard Büttgenbach, Gerald Lüttgens, Ralf Zeler, and
the author. The Banach-Steinhaus theorem with rates by Paul Butzer, Karl
Scherer and Ursula Schmidt-Westphal [2] inspired the work of this group, see
[4]. While most of the quantitative uniform boundedness theorems have been
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formulated for sub-linear bounded functionals on Banach spaces, sub-linearity
is violated when it comes to non-linear approximation with neural networks.
In the following sections, a non-linear version of the theorem in [5, p. 108]
is used. This non-linear variant was proved in [8]. It was specialized in [7] to
be directly applicable to VC dimension estimates, and was then applied to
analyze the error of best multivariate approximation with single hidden layer
neural networks. The given paper demonstrates that it can also be used to an-
alyze multi-layer networks that are applied as deep neural networks in many
current machine learning applications.

2 Sharpness Result

To couple width parameter N and depth parameter L, these values are written
as functions N(n) and L(n) of a common parameter n ∈ N. There may be a
gap between the convergence rate of the direct estimate and the VC dimension
estimate from which sharpness is derived. This gap does not occur when the
depth parameter L(n) is upper bounded or when the width parameter N(n) is
either upper bounded or when the maximum width is lower bounded by L(n)γ

for a real power γ > 0, i.e., N(n) ≥ L(n)γ , see [12]. While the simpler case
of bounded depth is briefly discussed in the conclusions section, the rest of
the paper is mainly concerned with the effect of increasing depth by choosing
L(n) := n and N(n) := M&1 + nγ( for a fixed γ ≥ 0 (the case of bounded
width is included with γ = 0) and a constant M ∈ N, M ≥ 3, that is chosen

large enough to get d d
√
M ≤ M , i.e., M ≥ d

d
d−1 if d > 1, and thus

Ñ(n) := N̂(N(n)) = 3d+3(N(n) + 2) = 3d+3(M&1 + nγ(+ 2).

For the later proof of condition (9), a slightly larger depth than required by
the direct estimate is chosen:

L̃(n) := (29 + 2d)n ≥ L̂(L(n)) = L̂(n) = 11n+ 18 + 2d.

Then the direct bound (2) with N = N(n) = M&1 + nγ( and L = L(n) = n
also holds for larger networks with width Ñ(n) and depth L̃(n).

Let Vn be the space of all (continuous) functions on [0, 1]d which can be
represented by a ReLU neural network (1) with maximum width Ñ(n) and
maximum number of hidden layers L̃(n). Further let En be the error of best
approximation measured in the sup-norm, i.e.,

En(f) := inf{‖f − Φ‖∞ : Φ ∈ Vn}.

Then, from (2), by applying the properties of the modulus of continuity (see
[9]), one obtains the following estimate for γ > 0, each f ∈ C([0, 1]d) and
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n ∈ N:

En(f) ≤ 131
√
d · ω

(

f,
1

d
√

M2&1 + nγ(2n2 log3(M&1 + nγ(+ 2)

)

≤ 131
√
d · ω

(

f,
d
√

ln(3)
d
√

M2n2γ+2 ln(Mnγ)

)

= 131
√
d · ω

(

f,
d
√

ln(3)
d
√

M2n2γ+2[ln(M) + γ ln(n)]

)

≤ 131
√
d

[

d

√

ln(3)

M2 min{ln(M), γ}
+ 1

]

· ω

(

f,
1

d
√

n2γ+2(1 + ln(n))

)

= Cd,γ · ω

(

f,
1

d
√

n2γ+2(1 + ln(n))

)

. (3)

In the case of bounded width, i.e., γ = 0, one obtains

En(f) ≤ Cd,0 · ω
(

f,
1

d
√
n2

)

. (4)

Based on VC dimension estimation, a corollary of the optimality result
in [12] is that the error estimate cannot be improved for functions belonging
to Lipschitz classes. Let 0 < α ≤ 1 then there exists a constant cα > 0,
independent of n ≥ n0, such that

sup
{

En(f) : f ∈ C([0, 1]d) ∧ ω(f, δ) ∈ O (δα)
}

≥ cα
(

d
√

N(n)2L(n)2 log3(N(n) + 2)
)−α

. (5)

This estimate does not exclude that for all f ∈ C([0, 1]d) with ω(f, δ) ∈ O (δα)

lim
n→∞

En(f)
(

d
√

N(n)2L(n)2 log3(N(n) + 2)
)−α = 0,

i.e, En(f) = o(( d
√

N(n)2L(n)2 log3(N(n) + 2))−α), could hold true. Despite of
(5), that would imply that convergence could be faster for each single function
than suggested by the error bound.

To additionally show the sharpness of this estimate with regard to little-o
rates, abstract moduli of smoothness ω are applied, see [13, p. 96ff]: An abstract
modulus of smoothness is a continuous, increasing function ω : [0,∞) → [0,∞)
such that for δ1, δ2 > 0

0 = ω(0) < ω(δ1) ≤ ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2). (6)

When dealing with Lipschitz classes, one chooses ω(δ) := δα, 0 < α ≤ 1.
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Fig. 1 A value can be passed unchanged along a deep ReLU network with two neurons per
layer.

Theorem 1 Let γ > 0. For each abstract modulus of continuity ω satisfying

lim
δ→0+

ω(δ)

δ
= ∞, (7)

i.e., ω(δ) = δ is excluded, there exists a function fω ∈ C([0, 1]d) such that for
all n ∈ N

En(fω) ≤ C1ω

(

fω,
1

d
√

n2γ+2(1 + ln(n))

)

≤ C2ω

(

1
d
√

n2γ+2(1 + ln(n))

)

(with constants C1 and C2 independent of n, cf. (3)) but (n → ∞)

En(fω) ,= o

(

ω

(

1
d
√

n2γ+2(1 + ln(n))

))

.

In the case γ = 0 of bounded width, the same result holds with the ln(n)
expressions replaced by zero.

3 Proof of Theorem 1

Instead of directly dealing with the error functionals En, extended networks
with additional 2d + 4 utility neurons per hidden layer are used as shown
in Figure 2, i.e., with width between 2d + 4 and L̃(n) + 2d + 4 and depth
bounded by Ñ(n). Some connections from and to these utility neurons have
fixed weights −1 or 1 and most biases are set to zero, as shown in the figure.
Other weights of the additional connections can be set to zero such that the
approximation capability is equal or better than the approximation capability
of core network of type (1) with width at most L̃(n) and depth at most Ñ(n).
The connections within the core network are only indicated by the grayed out
area in Figure 2.

Let Wn be the corresponding spaces of functions that can be realized by
these extended networks and let Rn be the corresponding error of best ap-
proximation. Then Vn ⊆ Wn and Rn(f) ≤ En(f) such that error bounds (3)
and (4) directly apply for Rn(f).

The ReLU activation function allows a value to be passed unchanged
through the network by utilizing two neurons per layer, see Figure 1:

x = σ(. . .σ(σ(x)))− σ(. . .σ(σ(−x))). (8)
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Fig. 2 Network topology for defining function spaces Wn: Each node represents a neuron
that adds all input values plus a bias value (if any) and applies the ReLU function to
compute its output. One input (i.e., d = 1) is passed through the network unchanged with
2d = 2 neurons per layer, so that the original input is available in all network layers. A
weighted output sum of each network layer can be accumulated by four neurons. Before the
values are added, they can be split into a difference a− b of two non-negative values a and
b which are added separately with the first and the second row of neurons.

This is the idea behind the construction of of spacesWn. The extended network
in Figure 2 consist of 2d rows of neurons in the input transfer part, allowing
the input values to be forwarded to all hidden layers. The input values are
weighted by either 1 or −1 to pass the amount through ReLU activation
functions unchanged, cf. (8). Thus, a network can be concatenated from several
subnetworks, all of which have access to the original input. Their outputs can
be accumulated into a sum with the help of output accumulation neurons that
are organized in four rows in Figure 2. Only non-negative values are passed
along the first two rows, as they are connected with neurons of the core network
via the neurons of the third and fourth rows, which apply ReLU activation.

This allows us to prove the following lemma, which establishes prerequisites
for the resonance theorem.

Lemma 1 The error functionals (Rn)∞n=1, Rn : C([0, 1]d) → [0,∞), fulfill
following conditions for m ∈ N, f, f1, f2, . . . , fm ∈ C([0, 1]d), and constants
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c ∈ R:

Rm·n

(

m
∑

k=1

fk

)

≤
m
∑

k=1

Rn(fk), (9)

Rn(cf) = |c|Rn(f), (10)

Rn(f) ≤ ‖f‖∞, (11)

Rn(f) ≥ Rn+1(f). (12)

Proof Condition (10) immediately follows from multiplying or dividing weights
and the bias of the output layer by c if c ,= 0. When c = 0, all weights can be
chosen to be zero. By using zero weights and biases, (11) is also established.
Since Wn ⊆ Wn+1 (only upper bounds for depth and width are specified), (12)
is obvious. To show (9) for m > 1, let ε > 0 and Φ1, . . . ,Φm ∈ Wn be functions
realized by extended networks with width at most L̃(n)+ 2d+4 and depth at
most Ñ(n) such that ‖fk−Φk‖∞ < Rn(fk)+ε/m. Then

∑m
k=1 Φk ∈ Wm·n. To

see this, the n extended networks are interpreted as subnetworks that can be
concatenated as shown in Figure 3 for two subnetworks. The resulting network
has a width of at most Ñ(n) + 2d + 4 ≤ Ñ(n ·m) + 2d + 4 and a depth that
is bounded by m · L̃(n) = m · (29 + 2d)n = L̃(n ·m) so that these parameters
fit with Wn·m.

To provide the first layer of the kth sub-network with weighted input data,
as in the stand-alone network-realization of fk, input transfer neurons are
connected to the first layer neurons of this sub-network. The connections are
weighted in the same way as the original direct connections from the input
node, but because of (8), each weight is used both with a factor of 1 and −1,
see Figure 4.

The output of the first n− 1 subnetworks is accumulated by means of the
neurons of the output accumulation part, again using (8). Instead of connect-
ing the last hidden layers of these subnetworks to an output node, they are
connected to the neurons of the third and fourth rows in the output accu-
mulation part, see Figure 5. The connections to the third row are weighted
with the original weights of the connections to the output node, and the bias
of the output node is applied to the corresponding neuron of the third row.
The connections to the fourth row are weighted by the original weights of the
connections to the output node, multiplied by −1, and the output node bias
times −1 is applied to the corresponding neuron in the fourth row. Thus, the
output is represented as a sum a− b of two non-negative values a and b. The
value a is added to the accumulator that is represented by the first row, and
the value b is added to the sum realized by the second row. Note that the non-
negative values passed in the first two rows of neurons of a subnetwork are
a superposition of results from other subnetworks and intermediate results of
the current subnetwork that become the final result of this subnetwork when
the weighted outputs of its last hidden layer and the bias of its output node
are added.
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Fig. 3 Subnetworks can be concatenated into larger networks without increasing the width.
The image shows a network that is able to add the outputs of two subnetworks computed
on the same input value. This can be extended to the concatenation of m subnetworks
operating on d input nodes in a straightforward manner.
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−w2
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Fig. 4 Each subnetwork can be used with the original input, cf. Figure 3; left: d = 1 input
neuron is directly connected with first layer neurons; right: instead of a direct connection
with the input node, input transfer neurons are connected with neurons of the first layer of
a subnetwork.

This construction results in a network that computes
∑m

k=1 Φk ∈ Wm·n.
Therefore,

Rm·n

(

m
∑

k=1

fk

)

≤

∥

∥

∥

∥

∥

m
∑

k=1

fk −
m
∑

k=1

Φk

∥

∥

∥

∥

∥

∞

≤
m
∑

k=1

‖fk − Φk‖∞

<
m
∑

k=1

(

Rn(fk) +
ε

m

)

= ε+
m
∑

k=1

Rn(fk).

Since ε > 0 can be chosen arbitrarily, (9) follows. ./

An estimate for the VC dimension is applied in order to condense coun-
terexamples. Let V be a set of functions g : X → R on a set X ⊆ Rd and
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Fig. 5 The output of a subnetwork (left) can be added to the sum of outputs of the preceding
subnetworks (right) giving a− b where a is the non-negative output value of the upper right
neuron and b is the non-negative output value of the lower right neuron, cf. Figure 3.

H : R → {0, 1} be the Heaviside-function

H(x) :=

{

0, x < 0
1, x ≥ 0.

Then the VC dimension VC-dim(V ) is the largest cardinality of a subset

S = {x1, . . . , xk} ⊆ X

such that for each sign sequence s1, . . . , sk ∈ {−1, 1} a function g ∈ V can be
found that fulfills (cf. [1])

H(g(xi)) = H(si), 1 ≤ i ≤ k.

WithX = [0, 1]d, a well-known VC dimension estimate for n ∈ N is applied,
see [12]. For γ > 0 one gets

VC-dim(Wn)

≤ C1 ·min{(Ñ(n) + 2d+ 4)2L̃(n)2 ln([Ñ(n) + 2d+ 4]L̃(n)),

(Ñ(n) + 2d+ 4)3L̃(n)2} (13)

≤ C1 ·
(

3d+3(M&1 + nγ(+ 2) + 2d+ 4
)2

(29 + 2d)2n2·
· ln
(

(3d+3(M&1 + nγ(+ 2) + 2d+ 4)(29 + 2d)n
)

≤ C2 · n2γ+2 · ln(C3 · nγ+1) = C2 · n2γ+2 · [ln(C3) + (1 + γ) ln(n)]

≤ CVC · n2γ+2 · (1 + ln(n)) (14)

with constants independent of n. In the case of bounded width, i.e., γ = 0,
there is

VC-dim(Wn)

≤ C1 · (Ñ(n) + 2d+ 4)3L̃(n)2 ≤ C2L̃(n)
2 = C2(29 + 2d)2n2 ≤ CVCn

2. (15)
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The constant CVC ≥ 1 can be chosen such that both (14) and (15) hold.
This upper bound especially holds true if one replaces Wn by a set of

functions from Wn that are additionally restricted to a subset of [0, 1]d. As
subsets, grids are used in the following theorem that is taken from [7, Theorem
5]. It combines a quantitative extension of the uniform boundedness principle
with VC dimension estimates.

If one compares inequality (13) with the error estimate (2), then the log-
arithm ln(Ñ(n)L̃(n)) differs from ln(Ñ(n)). This is the reason for coupling
Ñ(n) and L̃(n) such that the depth L̃(n) is bounded or Ñ(n) is, in principle, a
power of L̃(n). In the case of bounded width, one has (Ñ(n)+2d+4)3L̃(n)2 ∈
O(L̃(n)2) such that this problem does not occur.

Theorem 2 (Sharpness due to VC Dimension, [7]) Let (Fn)∞n=1 be a
sequence of (non-linear) function spaces Bn of bounded real-valued functions
on [0, 1]d such that (error-)functionals

Fn(f) := inf{‖f − g‖C([0,1]d) : g ∈ Bn}

fulfill conditions (9)–(12) on the Banach space C([0, 1]d). An equidistant grid
Xn ⊆ [0, 1]d with a step size 1

τ(n) , τ : N → N, is given via

Xn :=

{

j

τ(n)
: j ∈ {0, 1, . . . , τ(n)}

}

× · · ·×
{

j

τ(n)
: j ∈ {0, 1, . . . , τ(n)}

}

.

Let

Bn,τ(n) := {h : Xn → R :

a function g ∈ Bn exists with h(x) = g(x) for all x ∈ Xn}

be the set of functions that are generated by restricting functions of Bn to
this grid. Convergence rates are expressed via a strictly decreasing function
ϕ(x) : [1,∞) → (0,∞) with limx→∞ ϕ(x) = 0 such that for each 0 < λ < 1
there has to exist a real number X0 = X0(λ) ≥ λ−1 and a constant Cλ > 0
such that for all x > X0 there holds

ϕ(λx) ≤ Cλϕ(x). (16)

Let the VC dimension of Bn,τ(n) and function values of τ and ϕ be coupled
via inequalities

VC-dim(Bn,τ(n)) < τ(n)d, (17)

τ(4n) ≤
C

ϕ(n)
, (18)

for all n ≥ n0 ∈ N with a constant C > 0 that is independent of n.
Then, for each abstract modulus of smoothness ω satisfying (6) and (7),

there exists a counterexample fω ∈ C([0, 1]d) such that for δ → 0+ and n → ∞

ω(fω, δ) = O (ω(δ)) and Fn(fω) ,= o (ω(ϕ(n))) .
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In the proof of the theorem, the counterexample fω is obtained with a reso-
nance sequence of smooth functions that realize signs at the grid points such
that no function of Bn can have the same signs on the grid due to the VC
dimension estimate. Then the uniform boundedness principle of [8] condenses
the sequence to a single function by utilizing properties (9)–(12). This is proved
in the cited paper with the gliding hump method: The counterexample is con-
structed as an infinite series of scaled functions from the resonance sequence.
Then, for some sub-sequence (nj)∞j=1 of indices, the error Fnj

applied to the
jth summand becomes so large (hump) that it dominates the value of Fnj

when applied to the remainder of the sum. This results in the desired lower
estimate of the error.

Proof (of Theorem 1) Theorem 2 is applied to prove Theorem 1 by choosing
function spaces Bn := Wn and functionals Fn := Rn as defined before based on
extended networks. Then Lemma 1 shows that conditions (9)–(12) are fulfilled.
For n ∈ N, let

ϕ(x) :=

{ 1
d
√

x2γ+2·(1+ln(x))
for γ > 0

1
d√
x2

for γ = 0,

τ(n) :=

{

2 · &2 d
√

CVCn2γ+2 · (1 + ln(n))( for γ > 0
2 · &2 d

√
CVCn2( for γ = 0,

with the constant CVC from (14) and (15). The function ϕ ist strictly de-
creasing with limx→∞ ϕ(x) = 0. To prove (16) for γ > 0, let 0 < λ < 1.
Then ln(λ) < 0 and for x > X0 := 1

λ2 (which is greater than 1
λ ), i.e.,

1
2 ln(x) > − ln(λ), there is ln(x) > 1

2 ln(x)− ln(λ) such that (16) is fulfilled:

ϕ(λx) =
1

λ
2γ+2

d
d
√

x2γ+2(1 + ln(x) + ln(λ))
<

1

λ
2γ+2

d
d

√

x2γ+2
(

1 + ln(x)
2

)

≤
d
√
2

λ
2γ+2

d

ϕ(x).

In case of bounded width, i.e., γ = 0, condition (16) also holds true: ϕ(λx) =
λ− 2

d ( d
√
x2)−1 = λ− 2

dϕ(x).
VC dimension bound (17) directly follows from (14) for γ > 0,

VC-dim(Wn) ≤
(

d
√

CVC · n2γ+2 · (1 + ln(n))
)d

≤
⌊

1 + d
√

CVC · n2γ+2 · (1 + ln(n))
⌋d

≤
⌊

2 · d
√

CVC · n2γ+2 · (1 + ln(n))
⌋d

< τ(n)d,
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and from (15) for γ = 0:

VC-dim(Wn) ≤
(

d
√

CVC · n2
)d

≤
⌊

1 + d
√

CVC · n2
⌋d

≤
⌊

2 · d
√

CVC · n2
⌋d

< τ(n)d.

It remains to show (18). For γ > 0 there holds

τ(4n) ≤ Cτ · d
√

(4n)2γ+2 · (1 + ln(4n))

≤ Cτ4
2γ+2

d ( d
√

n2γ+2 · (1 + ln(4) + ln(n)) ≤
Cτ4

2γ+2
d

d
√

1 + ln(4)

ϕ(n)
,

whereas the estimate follows for bounded width, i.e., γ = 0, via

τ(4n) ≤ Cτ · d
√

(4n)2 ≤ Cτ4
2
d

d
√
n2 = Cτ4

2
d

1

ϕ(n)
.

Theorem 2 now provides a counterexample fω, for which in case γ > 0

ω

(

fω,
1

d
√

n2γ+2(1 + ln(n))

)

= O

(

ω

(

1
d
√

n2γ+2(1 + ln(n))

))

,

En(fω) ≥ Rn(fω) ,= o

(

ω

(

1
d
√

n2γ+2(1 + ln(n))

))

,

and for γ = 0:

ω

(

fω,
1

d
√
n2

)

= O

(

ω

(

1
d
√
n2

))

, En(fω) ≥ Rn(fω) ,= o

(

ω

(

1
d
√
n2

))

.

Thus, Theorem 1 follows by considering (3) and (4), respectively. ./

4 Conclusions

The given paper has discussed the sharpness of an error bound for the approx-
imation with deep ReLU networks, where the depth grows with a parameter
n. If the width grows linearly with n, the depth can even be chosen to be
a constant. In this simpler situation (which corresponds to the discussion of
single layer networks in [7]), the direct error bound (2) becomes

En(f) ≤ Cω

(

f,
1

d
√

n2(1 + ln(n))

)

,

and the errors of best approximation En immediately satisfy the properties in
Lemma 1, since for property (9) the m subnetworks can be arranged in parallel
to form a network corresponding to parameter m ·n such that all subnetworks
are connected to the input nodes and the output node. Thus, no additional
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utility neurons are required. Using the VC dimension estimate VC-dim(Vn) ≤
Cn2(1 + ln(n)), Theorem 2 proves the existence of a counterexample fω ∈
C([0, 1]d) for each abstract modulus of continuity ω satisfying (7) such that

En(fω) ≤ C1ω

(

fω,
1

d
√

n2(1 + ln(n))

)

≤ C2ω

(

1
d
√

n2(1 + ln(n))

)

but (n → ∞)

En(fω) ,= o

(

ω

(

1
d
√

n2(1 + ln(n))

))

.

Due to the ln(n) expression, the error in this case of bounded depth is asymp-
totically smaller than in the case of bounded width, see (4). This seems to
contradict the success of deep neural networks. But the estimates are ob-
tained for networks consisting of fully connected layers. Instead of width and
depth, the number of different weights and biases in connection with the role
of sparsely connected layers (e.g., convolution and max-pooling layers) could
be discussed in future work.
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