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Abstract

The paper “New study on neural networks: the essential order of approximation” by Jianjun Wang and

Zongben Xu, which appeared in Neural Networks 23 (2010), deals with upper and lower estimates for the

error of best approximation with sums of nearly exponential type activation functions in terms of moduli of

smoothness. In particular, the presented lower bound is astonishingly good. However, the proof is incorrect and

the bound is wrong.
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In (Wang and Xu, 2010), a feedforward neural net-

work with a nearly exponential type activation func-

tion σ like the logistic function is discussed. Both up-

per and lower bounds for the error of best approxima-

tion are presented. The upper estimate against a second

order modulus of smoothness is based on the work of

Ritter in (Ritter, 1999) that in turn utilizes the classical

Jackson estimate for the error of best algebraic polyno-

mial approximation. Also a much more sophisticated

and interesting lower bound (inverse estimate) against

a second order modulus is presented. The proof of this

inverse estimate, that is stated in formula (2.2) of The-

orem 1, i.e., in the notation of (Wang and Xu, 2010)
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with a constant C that is independent of function f

and n, is incomplete, and the formula is wrong. For

simplicity, let σ be the logistic function that is refer-

enced in the paper. Let dimension d := 1 and com-

pact set V := [0,1]. Then Rσ
k (1) is the set of func-

tions
∑k

λ=0 aλ σ(−λ lx + bλ ) for some l > 0. Func-
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For x ≤ 0, one can uniformly approximate ex ar-

bitrarily well by σ(c)−1σ(x + c) for c → −∞

(cf. (Wang and Xu, 2010, p. 220)). A similar ap-

proximation is possible for all nearly exponen-

tial activation functions, cf. (Ritter, 1999). Thus on

V , each function fn(x) can be approximated uni-

formly by σ(c)−1σ(−(n + 2)x + c) ∈ Rσ
k (1), c →

−∞, k ≥ 1. Therefore, the error of best approxima-

tion by functions of Rσ
k (1) vanishes in the sup-norm:

d∞( fn,R
σ
k (1))= 0. Using fn with formula (2.2) implies

(1− e−1)2 ≤ C
n2 which is obviously wrong for n → ∞.

The crucial argument in the proof of (2.2) is hid-

den behind references that do not match with the es-

timate that has to be proved. On page 619 an error

of best approximation, i.e., the distance of a func-

tion f to a set of bounded functions S, is defined via

d∞( f ,S) := supg∈S ‖ f − g‖∞. This is a typo and the
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supremum needs to be replaced by an infimum. Other-

wise, the direct estimate does not hold. Then, in addi-

tion to other issues in the proof, it’s not explained how

the error of best polynomial approximation can in turn

be estimated upwards against the (possibly smaller) er-

ror of best approximation with sums of nearly expo-

nential type functions at the top of page 623. Maybe

the typo is applied here. Via a reference to the (not

included) proof of Theorem 3, the paper refers to an

older paper (Xu and Wang, 2006) by one of the au-

thors. In the cited proof an upper (but not lower) es-

timate of the error of best approximation with sums of

exponential functions is derived following the idea of

(Ritter, 1999). To this end, a sum of (nearly) exponen-

tial type functions is constructed such that its approx-

imation error is close to the error of best polynomial

approximation. Thus, Jackson’s inequality for this er-

ror can be used as an upper bound for approximation

with (nearly) exponential type functions. But this sum

of (nearly) exponential type functions does not neces-

sarily have to be close to the best approximation that is

possible with such functions, it is just good compared

to polynomial approximation. The presented argument

does not exclude that higher convergence orders than

for polynomial approximation are possible.

From (2.2), an even better estimate is derived in Re-

mark 1 on page 620:
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‖ f‖∞ ≤ d∞( f ,Rσ

n (d)).

It is based on the comparison of two zero sequences.

However, such sequences may converge to zero with

different orders such that, even if (2.2) would hold, this

is no proof of the stated inequality (that is contradicted

by the sequence fn, too). With the same comparison of

zero sequences one could also improve the classical

inverse theorem of trigonometric approximation, cf.

(DeVore and Lorentz, 1993, p. 208). But it is known

that this is not possible even if the constant is allowed

to depend on f , see (Dickmeis et al., 1984, Corollary

3.1).

Similar errors occur in papers (Xu and Wang, 2006)

and (Xu and Cao, 2004) that motivated the discussed

results in (Wang and Xu, 2010).
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