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Abstract. The discussed two-dimensional nesting problem is motivated
by the production of differently shaped tiles of laminated safety glass that
can be represented by primitive, convex polygons. Within as few rect-
angular bins as possible, representing the space of a furnace, tiles must
be placed without overlapping. While the primary problem is to mini-
mize the number of occupied bins, distances between adjacent tiles or
a tile and an adjacent furnace boundary must be neither too small nor
too large to ensure the stability of the furnace filling during a lamina-
tion process. To fulfill this condition, a minimum number of additional
rectangular support plates must be added. These plates are considered
equivalent to tiles when measuring distances. This is a new aspect that,
to our knowledge, has not been covered in the literature so far. We rep-
resent the problem as a mixed integer linear program based on no-fit
polygons and compare results with those of a greedy-type heuristic.
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1 Introduction

A variety of heuristics and optimization procedures including evolutionary algo-
rithms and simulated annealing strategies have been developed to tackle several
problems of nesting polygonal shapes within rectangular spaces, cf. [2]. This pa-
per discusses a variant with additional constraints motivated by the automation
of laminated glass tile production by the company HEGLA-HANIC GmbH. The
tiles are homogeneous stacks of glass layers and intermediate foils. The compo-
sition of the layers can be optimized from a material point of view (cf. [9]), but
that is not intended here. Rather, the tiles are given as simple, convex 2D poly-
gons, which thus do not have to be generated by guillotine cuts. As a primary
optimization goal, the tiles must be arranged on a minimum number of rectan-
gular furnace bins without overlaps. During the laminating process, a plate is
placed from above the tiles with great pressure. The tiles must not be too close
to each other, but also not too far apart, so that the pressure does not cause any
damage. The lower distance bound can be easily achieved by enlarging the poly-
gons through scaling. To fulfill the upper distance condition, rectangular support
plates can be added. The secondary optimization goal is to minimize their num-
ber. This problem is strongly NP hard since the classical bin packing problem is
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reducible to it. The survey [10] summarizes modeling techniques for 2D nesting
problems. Here, we state the problem as a mixed integer linear program (MILP)
based on no-fit polygons. Then we discuss a simple greedy approach.

2 Mixed Integer Linear Program

Geometric Basics Let simple, convex polygons Pi, i ∈ [n] := {1, . . . , n}, rep-
resenting tiles be given such that they can be traversed counter-clockwise by fol-
lowing the edges between mi vertices vi,1, . . . ,vi,mi

and back to vi,mi+1 := vi,1

where vi,k = (vi,k.x,vi,k.y) ∈ R2. To guarantee a minimum distance between
tiles in the final layout, the original tiles have already been enlarged. We also add
N (also enlarged) rectangular support plates Pi, i ∈ {n+1, . . . , n+N} of not nec-
essarily different size and a rectangle Pn+N+1 that will be used to limit maximum
distances. The model also allows simple, convex polygons instead of rectangles.
For each pair (i, j) ∈ [n + N ] × [n + N + 1] with i < j we compute a no-fit
polygon (NFP, see [1,3]) Fi,j with vertices f i,j,1, . . . , f i,j,mi,j

, f i,j,mi,j+1 := f i,j,1
that are also arranged counter-clockwise. Here, this polygon describes the curve
of reference point vj,1 when Pj traverses around the edges of the fixed polygon
Pi. Note that with Pi and Pj , also the NFP is simple and convex. This follows
directly from the standard algorithm to obtain the shape of an NFP for two
convex polygons by orienting Pi counter-clockwise, Pj clockwise, translating all
directed edges of both polygons to a single point and then concatenating the
edges counter-clockwise giving a polygon F̃i,j with vertices f̃ i,j,k, see [4]. To ob-
tain the NFP Fi,j one only has to translate this shape F̃i,j according to the
reference point and the position of Pi with vector (∆xi,j ,∆yi,j),

∆xi,j := min
k∈[mi]

vi,k.x− max
k∈[mj ]

(vj,k.x− vj,1.x)− min
k∈[mi,j ]

f̃ i,j,k.x,

and ∆yi,j defined accordingly with x replaced by y. Whereas we restrict ourselves
to convex polygons, many algorithms were developed to also compute NFPs for
non-convex polygons, see [5,12] and the literature cited there.

To shift a polygon to a certain position, we use an offset si = (si.x, si.y).
Shifted polygons si + Pi and sj + Pj do not overlap if and only if sj + vj,1 lies
outside si + Fi,j . The NFPs have to be computed in advance. As a result, no
intersections need to be calculated later.

MILP Let B ≤ n be the maximum number of furnace rectangles (bins) to be
considered. To choose B sufficiently small, one can use the number of occupied
bins of any feasible solution computed with a heuristic, cf. Section 3. Binary
variables xi,k ∈ {0, 1} indicate whether a polygon Pi is placed within the furnace
rectangle with index k ∈ [B] (then xi,k = 1) or not (xi,k = 0). Then the primary
goal of the nesting problem is to minimize the number of occupied bins such
that all tiles can be placed without overlaps. The secondary goal is to use a
minimum number of support plates to fulfill the maximum distance restriction:
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With binary variables bk indicating the use of bin k, the goal is then

minimize
∑

k∈[B]

bk +
1

2N

∑

k∈[B]

n+N∑

i=n+1

xi,k, s.t. ∀k∈[B]

∑

i∈[n]

xi,k ≤ n · bk

and several further restrictions described in what follows.
The objective function is lower bounded by the area of all tiles divided by

the furnace area. All coordinates plus offsets, i.e., coordinates of points vi,k+ si,
have to be within the range of the furnace rectangle coordinates. Each polygon
has to be placed within at most one bin (cf. (1)): ∀i∈[N+n]

∑
k∈[B] xi,k ≤ 1.

There must be no overlaps between polygons si+Pi and sj+Pj placed within
the same bin (i.e., xi,k = xj,k = 1), i.e., by considering convexity of the NFP
Fi,j , the reference point sj + vj,1 must lie in at least one half-plane bounded
by a straight line through an edge of the NFP si + Fi,j and in which the NFP
is not located. For such a half-plane, yi,j,k ∈ {0, 1} is set to one. By applying
the inner product “·” and by considering the Hesse normal form of lines (the
absolute value of the inner product between a point on a line and a normal of
the line is the distance to the origin, here the outer normal of the occupied half
plane is chosen to compare signed distances), one gets conditions (cf. [7,10])

∀i,j∈[n+N ],i<j∀k∈[mi,j ]∀l∈[b]

(f i,j,k+1.y − f i,j,k.y,−f i,j,k+1.x+ f i,j,k.x)

· [(si.x+ f i,j,k.x, si.y + f i,j,k.y)− (sj .x+ vj,1.x, sj .y + vj,1.y)]

≤ M(2− xi,l − xj,l) +M(1− yi,j,k),

∀i,j∈[n+N ],i<j

∑

k∈[mi,j ]

yi,j,k ≥ 1.

The constant M > 0 has to be chosen sufficiently large. For non-convex polygons,
checking with convex regions outside the NFP can be done instead of checking
with half planes, see [6].

So far, we have not described how to enable rotations. In the application un-
der consideration, only rotations by multiples of 90◦ are to be discussed (orthog-
onal rotation). Rotations by a finite number of angles can be easily represented
by adding rotated tile polygons (of different shape) to the list of polygons Pi and
by assuring that exactly one rotated instance of a polygon has to be placed in
exactly one bin, i.e., for each index set I ⊂ [n], representing all rotated instances
of a tile, we require ∑

i∈I

∑

k∈[B]

xi,k = 1. (1)

We model a maximum distance condition by placing a grid with g points over all
furnace rectangles, i.e., bins, see Fig. 1. Let gi ∈ R2, i ∈ [g], be offset vectors that
shift predefined rectangle Pn+N+1 to have a center point at a corresponding grid
point. The condition is that, for each grid point indexed by i ∈ [g], in each bin at
least one intersection between a placed tile or support plate polygon sj +Pj and
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Fig. 1. The distance condition (2, 3) requires that each square of the background grid
has to be at least partially covered. Left: A feasible one-bin layout for two tiles (grey)
with two support plates (white). Right: An optimal solution using two bins without
support plates (instance 3 in Table 1).

this shifted rectangle gi+Pn+N+1 has to occur. Such an intersection is indicated
by setting a binary variable zi,j,l ∈ {0, 1}, i ∈ [g], j ∈ [n+N ], l ∈ [B], to one. It
occurs if and only if the reference point gi+vn+N+1,1 lies inside each half plane
that is bounded by a line through an edge of the NFP sj + Fj,n+N+1 and that
is occupied by the NFP.

∀i∈[g]∀j∈[n+N ]∀k∈[mj,n+N+1]∀l∈[B]

(f j,n+N+1,k+1.y − f j,n+N+1,k.y,−f j,n+N+1,k+1.x+ f j,n+N+1,k.x)

· [(sj .x+ f j,n+N+1,k.x, sj .y + f j,n+N+1,k.y)

− (gi.x+ vn+N+1,1.x,gi.y + vn+N+1,1.y)]

≥ −M(1− xj,l)−M(1− zi,j,l), (2)

∀i∈[g]∀l∈[B]

∑

j∈[n+N ]

zi,j,l >
∑

j∈[n+N ]

(1− xj,l). (3)

If xj,l = 0, one can choose zi,j,l = 1, i.e., ∀i∈[g]∀j∈[n+N ]∀l∈[B] zi,j,l ≥ 1− xj,l.
Certain solver heuristics appear to work better if shifted rectangles gi +

Pn+N+1 slightly overlap such that placement in overlap regions is preferred.

3 Greedy Approach

In up to 10,000 (nearly) random orders (permutations), we iteratively position
the tiles in a bottom-left strategy. Then, among all results with the smallest
number of bins, we select a result that intersects with the largest number of
rectangles gi + Pn+N+1 so that a small number of support plates is needed.
Motivated by the instability of the problem, this stochastic experiment replaces
a local search to find a good order. To further reduce the required number of
support plates, tiles small enough to fit into the distance rectangle Pn+N+1 are
always placed at the end of each permutation so that they can be inserted into
empty distance rectangles with priority. We basically use steps 1–5 of the genetic
algorithm in [8] in the implementation of the bottom-left strategy. However, we
do not only attach to the last placed tile polygon but to all polygons. We shift
each attached polygon as far as possible to the left and to the bottom by using
a binary search for feasible positions that also allows to fill gaps. After placing
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1: 9:

5: 11:

Fig. 2. Feasible solutions of four problem instances computed by CPLEX on 12 threads
within a limit of one hour elapsed time (instances 1, 5, 9, and 11 in Table 1)

the tiles, support plates are added to fulfill (2, 3). As long as each support plate
fits into the rectangle Pn+N+1 of the distance condition, and if enough support
plates are provided, this is always possible. Since we use distance rectangles
that slightly overlap, we greedily search for a vertex of these rectangles that is
covered by a maximum number of so far empty distance rectangles. Then we
place a support plate there (if it fits). Finally, we remove some of the support
plates by re-arranging tiles: For each rectangle gi + Pn+N+1 in which a support
plate is placed, we try to shift a tile from the left or from the bottom to the
border of this rectangle such that (2, 3) holds without the support plate.

4 Results

Results for exemplary problem instances1 provided by HEGLA-HANIC GmbH
are listed in Table 1. Small instances can be solved with our MILP to optimality,
e.g., see Fig. 1. However, for most instances up to 20 tiles, CPLEX 12.8 was
able to find feasible (but not necessarily optimal) solutions within 60 minutes,
cf. Fig. 2. The greedy approach found feasible solutions for all instances within
less than two minutes when working with 10,000 permutations, but in most cases
1,000 permutations led to similar results in a fraction of time. For instances that
could be solved with the MILP, the greedy heuristic was able to obtain the same
number of bins as the MILP and reduce the number of support plates to one on
average, while the feasible solutions found by MILPs within the time limit had
zero support plates on average. For some instances, we could further reduce the
support plates manually, see upper bounds for the optimum in brackets.

5 Conclusions

Although the greedy approach often fails to find a minimum number of support
plates, it is apparently sufficient for practical use. Future work may test other
strategies. For example, the assignment to bins could be separated from the
placement of tiles and support plates within the bins in a branch-and-bound
approach. The prerequisites of the framework in [11] are fulfilled. Grouping tiles
into classes could help doing the tile assignment.

1Data available at https://www.hs-niederrhein.de/fileadmin/dateien/FB03/
Personen/goebbels/Publikationen/dataset.zip
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Table 1. Results of the MILP and the greedy strategy (10,000 permutations): A best
feasible solution of the MILP is considered if the time limit of 60 minutes is exceeded.

MILP (CPLEX, 12 threads) Greedy Strategy (one thread)
instance tiles bins support time [ s ] bins support time [ s ]
1 19 4 0 exceeded 4 0 13
2 47 – – exceeded 9 8 (≤ 5) 86
3 11 2 0 18 2 1 (0) 5
4 12 – – exceeded 4 4 (≤ 3) 15
5 12 3 0 exceeded 3 3 (0) 7
6 12 – – exceeded 8 7 (≤ 5) 20
7 28 – – exceeded 9 3 (≤ 1) 18
8 36 – – exceeded 7 5 (≤ 4) 51
9 12 2 0 exceeded 2 0 6
10 14 – – exceeded 4 1 (0) 8
11 14 3 0 exceeded 3 1 (0) 12
12 46 – – exceeded 16 17 (≤ 9) 73
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