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Abstract

This paper deals with some techniques that can be used to improve quality and geometric consistency
of data-driven 3D city models. It focuses on two practical tasks with respect to roof polygons: find-
ing better edges and planarization. To increase the quality of edges, models are merged with true
orthophotos and cadastral data. With mixed integer linear programs, the number of right angles and
symmetry are maximized. Linear optimization problems also help to correct non-planar roof facets
and to avoid artificial step edges within roofs. Since these methods change the positions of vertices,
self-intersections of polygons have to be healed, and building walls have to be re-arranged. The tech-
niques focus on roof geometries that can be represented in 2.5D. In general, this is true for CityGML
models in level of detail 2 that do not have detailed facades or overhangs. However, techniques can
also be adapted to other 2.5D modeling tasks.
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1. Introduction

Cities are often visualized with a textured sur-
face triangulation. However, there is no semantics
associated with triangles. To the contrary, City-
GML [2] is an XML-based description language
for semantic city models. In CityGML, each wall,
roof facet, window etc. is defined as an individ-
ual planar polygon. This is required for cadastral,
planning, simulation, and marketing purposes, see
[3]. Typically, CityGML models are generated by
using a model or a data driven approach, or by
combining both methods (see [4], cf. [5, 6, 7, 8]).
Model driven approaches use a library of param-
eterized standard roofs. To this end, a building
is segmented into small atomic parts, for example
by extending footprint edges. Then, for each part,

✩A short version of some parts of this paper has already
been published in the proceedings of the International
Conference on Computer Graphics Theory and Applica-
tions (GRAPP), Porto, 2017, see [1]. This article has been
accepted for publication in Graphical Models Journal, see
https://doi.org/10.1016/j.gmod.2019.101044

the parameterization of a standard roof is selected
which fits best to the point cloud. This approach
might fail for complex buildings like churches, and
small structures like dormers and chimneys do
not find their way into these building models but
might lead to a wrong choice of parameters like
roof slopes.

Data driven methods detect planes or other
geometric primitives and combine even small roof
facets to complete roofs (see e. g. [9, 10]). Due
to low resolution of airborne laser scanning or
artifacts in photogrammetric point clouds, data-
driven CityGML models often violate planarity
requirements and might have noisy step edges.
Orthogonality of real building edges might not be
correctly modeled.

The appearance of models can be improved
either during the original model creation work-
flow or later based on existing models. Examples
for improving model quality within the creation
workflow are given by Wichmann and Kada in [11]
and by Demir et al. in [12]. Wichmann and Kada
segment similar dormers in a point cloud. Then
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corresponding point cloud regions are merged to
enhance density. A prototype dormer model can
be generated on the dense cloud. Demir et. al.
describe a procedure to detect repeating struc-
tures in point clouds.

This paper’s techniques can be applied both
during model creation and on existing models.
They adjust roof edges and establish planarity

Figure 1: Orthophoto (left) vs. true orthophoto (right) [1]

of roof facets. Edges are re-positioned based on
domain knowledge, cadastral data and true or-
thophotos as additional (optional) information,
see Section 3. Domain knowledge, for example,
is that the most likely angle between two build-
ing edges is the right angle. Often structures are
rectangular or show symmetry.

Throughout this paper we are concerned with
CityGML models that are given in a level of detail
(LoD) 2, i.e., they consist of somewhat detailed
roof structures but only straight walls without any
facade information like windows or doors. Such
2.5D models can be represented by roof facets and
a ground plane, wall facets can be automatically
added.

A geometrically corrected areal photo, fitting
with the coordinate system at ground level, is
called orthophoto. In a true orthophoto, not only
the ground level fits with the coordinate system
but also all levels above the ground including the
roof, see Figure 1. We detect edges of such pho-
tos and adjust models according to these edges as
well as to footprint edges from cadastral data, see
Section 3.1.

To establish right angles, we detect rectangles
(Section 3.2) or solve an optimization problem
with a mixed integer linear program. This tech-
nique can also be used to re-arrange edges in order

to increase a roof’s symmetry, see Section 3.3.
Changes to the roof layout might result in self-

intersecting polygons. Such error situations have
to be healed afterwards, see Section 3.4.

The given paper is not only concerned with
better modeling structures but also with improv-
ing geometric consistency, cf. [13, 14]. It focuses
on planarity of polygons. One can apply general
methods for repairing arbitrary 3D polygon mod-
els. But most building models have vertical walls,
so that one only has to deal with roof structures
that can be projected to 2D. Zhao et al. [14] pro-
pose an approach that corrects multiple types of
geometric error using shrink-wrapping on a wa-
tertight approximation of the tessellated building.
Alam et al. [15] describe methods to correct single
geometric problems of existing CityGML models.

We present a new algorithm to heal non-pla-
narity of roof facets and to avoid artificial step
edges. CityGML requires planarity, see [2, p. 25].
To some extend, many city models violate this
requirement, cf. [16, 17]. This is regarded as dif-
ficult to correct. We fix missing planarity with a
surprisingly simple but powerful linear program
in Section 4. Missing planarity often occurs be-
cause artificial step edges should be avoided in
roofs. Models with artificial step edges can also
be improved. Often, the edges can be removed by
solving a similar linear optimization task, see Sec-
tion 4. The algorithms of this section only adjust
z-coordinates (height values). Therefore, no fur-
ther self-intersections of polygons can occur. But
the algorithms might change slopes of roof facets.
This in turn influences visibility of walls. Also, re-
arrangement of roof edges (Section 3) leads new
wall positions. In Section 5 we describe a wall pro-
cessing step that has to run after all these modifi-
cations. By utilizing the 2.5D structure of models,
it fulfills the CityGML requirement that roof and
wall polygons completely belong to a building’s
outer hull.

2. Reference data set

We applied presented techniques to a square
kilometer of the city center of the German city
of Krefeld with 3987 buildings that we generated
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with our data-driven workflow [18] from a sparse
point cloud with five to ten points per square me-
ter, see Figure 2. The area corresponds to the
UTM interval

[32330000, 32331000]× [5689000, 5690000].

If nothing else is said, results were obtained for
this data set.

To test our planarization approach (Section
4), we also consider the larger 16 square kilometer
interval [32329000, 32333000]×[5687000, 5691000]
and also use a model-driven CityGML model of
North Rhine Westphalia that is freely available
[19]. For Krefeld’s city center square kilometer,
this model contains 41496 different LoD 2 roof
vertices that define 4102 buildings. Despite its
model-driven origin, it also shows (few) non pla-
nar roof facets, probably because of rounding er-
rors.

Additionally, we worked with a city model of
the city of Leverkusen, generated with the same
data-driven algorithm that in fact requires quality
improvement post-processing.

Figure 2: City center as reference data set

3. Adjusting roof edges

3.1. Merging edge data from different sources

Either from an existing 3D model or based on
point clouds during initial model generation, we
compute a 2D raster map in which pixel colors
refer to corresponding roof facets, see Figures 3–
5. One pixel of the raster image corresponds with
an area of 10 × 10 cm2. This fits with typical
data precision. When not dealing with existing

models, there might also be gaps in the raster
map. The idea is to improve a roof’s layout by
fitting border contours of roof facets to auxiliary
lines. Some auxiliary lines can be computed di-
rectly from a given model or from detected planes.
Intersection lines of roof planes correspond with
ridge lines, see Figure 3. Cadastral footprints of

Figure 3: Intersection lines between adjacent roof planes

building parts (see Figure 4) and edges of true or-
thophotos are additional information. If available,

Figure 4: Raster maps of roof facets (left): Red cadastre
polygons are borders of building parts, black areas could
not be associated with roof facets. The picture on the
right hand side shows the derived model [1].

one can generate a true orthophoto from overlap-
ping areal images - for example using the Struc-
ture from Motion algorithm. Our pictures were
computed from such overlapping photos. An al-
ternative method is to improve orthophotos with
the help of terrain and 3D building models. Vice
versa, there also exist various approaches to com-
bine LIDAR point clouds with information from
areal images to improve 3D building modeling.
For example, Tong et. al. [20] use edges of (true)
orthophotos to adjust step edges of flat roofs in a
city model that is based on a Delauny triangula-
tion. Arefi and Reinartz [21] decompose buildings
and fit parametric roof models according to ridge
lines detected from true orthophotos.
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We use true othophotos that have the same
resolution as the roof’s 2D raster map. Although
the tested photos originate from areal images with
only 60% horizontal and 50% vertical overlap, the
images fit well with models, cf. Figure 5. How-
ever, edges tend to be not exactly straight. Also,
a minor problem is that roofs may have textures
showing tiles or tar paper with many edges. Un-
fortunately, shadows lead to more significant ad-
ditional edges. A lot of research deals with re-

Figure 5: Red pixels belong to edges of a true orthophoto.
Colored areas belong to planes that were detected in a
model generation workflow. Both data sources match quite
well. Boundaries of larger dormers can be adjusted to the
edges [1].

moval of shadows, cf. [22] and the literature cited
there. However, our experiments with the algo-
rithm of [23] did not lead to sufficient results. A
reason might be the variety of colors of our arial
photos.

To find relevant edges with Canny edge detec-
tor, one has to individually find a threshold that
excludes irrelevant edges from textures. Instead,
we generate a kind of principal curvature image
without the need to select a threshold value, see
Figure 6. After anisotropic filtering, we convert
the orthophoto to a grey image and compute sec-
ond partial derivatives for each pixel position in
terms of a Hessian matrix, a symmetric matrix
with real eigenvalues. Then we filter for pixel po-
sitions for which the matrix has a locally largest
absolute eigenvalue, i.e., in terms of absolute val-
ues, the eigenvalue has to be larger than the eigen-
values of Hessian matrices of the two horizon-
tal, vertical or diagonal neighbors. At such po-
sitions, an eigenvector ~dλ of the eigenvalue λ with

largest absolute value |λ| points into the direction
of largest absolute curvature. It is orthogonal to
an eigenvector ~dµ of the eigenvalue µ, |µ| ≤ |λ|. If
additionally |λ| > 0 and |µ| ≈ 0, then curvature

is large in one direction only and ~dµ is orthogo-

nal to that direction. Thus, ~dµ is parallel to an
edge. We mark the corresponding position in an
image Ie of edges. Typically, the Hessian matrix
is used to find positions like corners, where local
geometry changes in two directions. We use it dif-
ferently to detect changes that only occur in one
direction. As a side effect, this direction can be
taken to filter for edges that are parallel or or-
thogonal to segments of the building’s footprint.

Edges might be not connected in Ie. We con-
nect them by computing the principal curvature
image in a higher resolution. A reduction of the
resolution (supersampling) then closes most gaps.

Figure 6: Results of Canny edge detector (middle) vs. our
curvature based method (right) [1]

Once we have derived auxiliary lines, we elim-
inate noise near computed and detected edges, es-
pecially near pixels of Ie. Noise consists of raster
map pixels indicating a roof facet at the wrong
side of a line. To this end, we remove pixels that
represent points closer than 30 cm to these lines,
depending on the type of line. Then, in a first
pass of region growing, we expand each colored
area into the free space that has been created by
removing pixels of the area’s color. In doing so,
we do not cross the lines under consideration. The
outcome is that pixels on wrong sides of lines are
deleted. This gives straight boundaries at ridge
lines, at edges of building parts and at edges of
the true orthophoto. However, by deleting pixels,
facets might become unconnected. Such facets
have to be split up into separate connected com-
ponents.

In a second pass of region growing, we let the
colored regions grow until they collide or reach
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one of the previously discussed lines or pixels of
Ie. Additionally, large height jumps (step edges)
limit region growing. There might be step edges
with small height differences in a given model.
Such edges might be either accurate or an artifact.
Here, the edges from orthophotos come into play.

A third pass of region growing is needed to
take care of areas that are still not colored. In this
pass, only other regions and the footprint from
cadastral data or a given CityGML model act as
boundaries. Since we use region growing, wrongly
placed auxiliary lines do not do much harm. This
especially is true for shadow edges.

From the new raster image of the roof, a 3D
building model can be easily reconstructed. Plane
equations are known. Edges between roof facets
correspond with contours in the raster image, and
they can be adjusted by snapping to auxiliary
lines (cf. [18]).

Figure 7 shows excerpts from a city model be-
fore planarization is performed (see Section 4).
Region growing bounded by edges of the true or-
thophoto improves the original model. However,
due to the resolution of data and quality of true
orthophotos, the outcome is far from being per-
fect. But it is a good basis to apply heuristics
that lead to parallel or orthogonal edges, see next
Sections 3.2 and 3.3.

Figure 7: Boundaries of the left model are adjusted to
edges of a true orthophoto. This results in the second
picture. Due to the region growing algorithm, some small
roof segments vanish, other small facets appear [1].

3.2. Rectangle estimation

Since buildings typically are composed from
rectangular structures, we detect and maintain
such rectangular shapes in the fashion of a hybrid
data and model driven approach. Figure 10 shows

first results. In contrast to [24], we do not di-
rectly fit geometric objects to the 3D point cloud
but use the 2D raster representation in two ways.
We search for roof shapes that are approximately
rectangular, but we also look for rectangular re-
gions that are bounded by step edges. Such areas
might be footprints of building parts like towers
or courtyards that rise higher or lower than the
surrounding roofs.

Figure 8: Detection of rectangular shapes by comparing
contours (red) with enclosing triangles and rectangles.

To find 2D rectangular structures, we compute
convex hulls of boundary contours and compare
their area with the area of their smallest enclos-
ing triangles, circles and rectangles, see Figure 8.
If the rectangle area is closest to the convex hull’s
area and the difference is below a threshold value,
then the contour might be rectangular. Due to ex-
perimental results, we also consider the intersec-
tions between these candidates to select rectangle
candidates that are suitable for alignment. As a
heuristics, we consider a candidate contour to be
a suitable alignment rectangle if and only if one
of the following two cases is at hand, see Figure
9:

• The candidate’s enclosing rectangle inter-
sects with the enclosing rectangle of another
candidate so that the intersection region is
a polygon with four vertices and has an area
larger than a threshold size, see middle case
in Figure 9. Then both candidates are con-
sidered. They are modified by using a com-
mon edge that avoids the intersection. This
edge lies on the intersection line between the
roof planes of the two regions. By using this
rule, gable roofs get precise ridge lines.

• The candidate’s enclosing rectangle is com-
pletely included in another enclosing rect-
angle. This is the case with dormers. Both
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rectangles might or might not have a com-
mon edge section, see right case in Figure
9.

Figure 9: Selection of rectangle candidates: We do not
consider rectangles that do not have a significantly large
intersection area with another candidate rectangle. The
left part of the figure shows three such situations. We do
consider rectangles with intersection areas as shown in the
middle and right part of the figure.

We slightly adjust the orientation of alignment
rectangles to match with long footprint edges. For
each alignment rectangle, the boundary polygon
of its corresponding roof facet is replaced by the
rectangle (Figure 10). One method to integrate
the rectangles into the graph of roof edges is to use
a raster representation as described in the previ-
ous section. All further model repair steps should
preserve these rectangular facets.

Figure 11 shows typical outcomes for dormers.

Figure 10: Preserving rectangular shapes: raster represen-
tation of roof facets without and with shape estimation.

3.3. Optimization of angles

An alternative approach to fitting geometric
structures is to arrange planar wall and roof seg-
ments so that many become pairwise co-planar or
orthogonal (cf. [25]). This corresponds with mod-
ifying detected 2D raster map contours so that
as many edges become orthogonal or parallel to
footprint edges as possible. In CityGML, a build-
ings’s footprint is defined by its ground plane or

Figure 11: Top to bottom: 3D print of a building with
rectangular dormers, a model with corrected rectangular
dormers and the original buildings

terrain intersection curve. The task can be formu-
lated as a mixed integer linear optimization prob-
lem with restrictions that maintain the buildings
footprint and roof topology, cf. [26]. We give a
short outline of such a linear program and start
with some notations that are summarized in Fig-
ure 12. Let D be a set that contains normalized
direction vectors d = (d.x, d.y) of footprint edges
that are longer than a threshold length of 2 m,
√

(d.x)2 + (d.y)2 = 1. D also contains directions
that are orthogonal to such long footprint edges.

!

"#

"##

$##

$ $# $##"

Figure 12: Notations for optimization problem: The roof
graph consists of two connected components that are pro-
cessed separately. E = E′ ∪ E′′ ist the set of edges,
V ′′ ⊂ V ′ ⊂ V are sets of vertices, respectively. The build-
ing’s footprint leads to two direction vectors in D.

We obtain a planar graph by projecting roof
edges to the x-y-ground plane. Then we com-
pute connected components of this graph. We will
change x-y-coordinates slightly to get orthogonal
edges. But such changes might propagate through
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Figure 13: Two scenarios for orthogonalization: The upper
row shows the initial layout. The second row visualizes the
outcome of optimization.

the corresponding connected component. There-
fore, we formulate separate optimization problems
for separate components. With E we denote the
set of all 2D edges

e = (e1, e2) = ((e1.x, e1.y), (e2.x, e2.y))

with non-zero length of a connected component
that additionally fulfill restrictions:

• An edge has to possess at least one vertex
that does not also belong to the footprint.

• An edge is not completely covered by edges
of inner or outer footprint polygons.

We use a partitioning E = E ′ ∪ E ′′. The sets
E ′ and E ′′ are disjoint, E ′′ is the set of all edges
that are a-priori orthogonal to a vector of D. In
what follows we allow edges in E ′ to change their
direction. Edges in E ′′ must keep their direction.

Let V be the set of vertices belonging to edges
in E and let V ′ ⊂ V be the set of vertices that
are not used in footprint polygons and that are no
intersection points of estimated roof’s ridge lines.
We allow position changes only for vertices in V ′.
But there still might exist vertices in V ′ that are
positioned on the interior of a footprint edge. We
have to keep them on this edge. V ′′ ⊂ V ′ is the
set of these vertices.

We model vertex changes with float variables.
For each v ∈ V , variables x+

v , x
−
v and y+v , y

−
v rep-

resent non-negative coordinate changes. Since a
change for v ∈ V \V ′ is not allowed, corresponding
variables are fixed set to zero.

We introduce binary variables xe,d that indi-
cate, if an edge e ∈ E ′ becomes orthogonal to a

direction vector d ∈ D:

xe,d =

{

1 : e becomes orthogonal to d
0 : else

.

The proposed mixed integer linear program
maximizes an objective function that implements
the primary goal to find a maximum number of
orthogonal edges. As a secondary aim, coordinate
changes have to be minimal:

max.

(

∑

e∈E′

∑

d∈D

xe,d

)

(1)

− 1

8 · |V ′| · ε
∑

v∈V ′

(

x+

v +x−
v +y+v +y−v

)

.

|V ′| denotes the number of elements of V ′. Fac-
tor 1

8·|V ′|·ε
is used to separate primary and sec-

ondary goal. It ensures that coordinate changes
contribute significantly less than one binary vari-
able does.

We seek a maximum subject to following re-
strictions:

If an edge e ∈ E ′ is marked as modified by
xe,d = 1, it must be orthogonal to d ∈ D:

−M · (1− xe,d)

≤ (e2.x+x+

e2
−x−

e2
− e1.x−x+

e1
+x−

e1
) · d.x

+(e2.y+y+e2−y−e2−e1.y−y+e1+y−e1) · d.y
≤ M · (1− xe,d),

where constant M is larger than the longest oc-
curring edge.

We need further restrictions to avoid changes
of vertices on the footprint and of intersection
points of ridge lines. For all v ∈ V \ V ′ we re-
quire

x+

v = x−
v = y+v = y−v = 0. (2)

Other vertices v ∈ V ′ are allowed to move within
a threshold distance ε > 0:

0 ≤ x+

v , x
−
v , y

+

v , y
−
v < ε. (3)

However, vertices v ∈ V ′′ have to stay on their
footprint edges with 2D vertices av, bv. This is
the case for the right example in Figure 13. We
model this with a parameter variable 0 ≤ rv ≤ 1:

x+

v − x−
v − (bv.x− av.x) · rv = av.x− v.x
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y+v − y−v − (bv.y − av.y) · rv = av.y − v.y.

(4)

Finally, we also keep the direction of edges
that already are orthogonal to a d ∈ D: For all
e ∈ E ′′ we require

(x+

e2
−x−

e2
−x+

e1
+x−

e1
) · (e1.y−e2.y) (5)

+(y+e2−y−e2−y+e1+y−e1) · (e2.x−e1.x) = 0.

In general, mixed integer linear programs are
NP-hard. However, we can reduce the degrees of
freedom, if we only allow xe,d to be one for edges
e that are roughly orthogonal to CityGML foot-
print directions. Then for our test data set, the
number of non-fixed binary variables is bounded
by 1500. Also, we can define a time limit for pro-
cessing. More than 95 % of buildings can be op-
timized within two seconds with the GNU Lin-
ear Programming Kit library GLPK [27] on one
kernel of a 2.4 GHz i5 processor1. If applied to
the result of rectangle estimation (Section 3.2),
the optimization algorithm still changes a median
value of three vertices per building. Thus it im-
proves the results of simpler rectangle estimation
slightly because additionally corners are consid-
ered that do not belong to rectangles. It also cor-
rects quantization errors that result from working
on a raster map. The rectangle estimation pro-
cedure can be omitted if using the optimization
step.

! !

Figure 14: Improving symmetry by considering red edges
with similar length and angle.

We focus on orthogonality, but it is also easy
to use classical linear programming to improve

1It is well-known that for mixed integer problems com-
mercial solvers like IBM’s ILOG CPLEX or Gurobi and
the non-commercial solver SCIP outperform GLPK.

symmetry of roof models. If edges e = (e1, e2),
f = (f1, f2) ∈ E ′ with vertices e1, e2, f1, f2 ∈ V
have lengths

‖e‖ =
√

(e2.x− e1.x)2 + (e2.y − e1.y)2

and ‖f‖ within a threshold distance and if there
exists a footprint direction vector d so that both
edges have nearly the same angles β1 and β2 with
d1 = ±d and d2 = ±d, respectively, then lengths
as well as angles should become equal. Figure 14
shows a graph with four edges that pairwise fulfill
such conditions. For each such pair of edges e and
f the difference

cos(β1)‖e‖ − cos(β2)‖f‖ =

(e2.x−e1.x) · d1.x+(e2.y−e1.y) · d1.y
−(f2.x−f1.x) · d2.x+(f2.y−f1.y) · d2.y

should be zero. To obtain a linear minimiza-
tion problem, we introduce non-negative variables
δ+ ≥ 0 and δ− ≥ 0 such that

δ+ − δ− =

(e2.x+x+

e2
−x−

e2
− e1.x−x+

e1
+x−

e1
) · d1.x

+(e2.y+y+e2− y−e2 − e1.y−y+e1+ y−e1) · d1.y
−(f2.x+x+

f2
−x−

f2
− f1.x−x+

f1
+x−

f1
) · d2.x

+(f2.y+y+f2− y−f2 − f1.y−y+f1+ y−f1) · d2.y.

Now one can minimize the sum of expressions
δ++δ− belonging to all suitable pairs of edges. To
maintain the overall shape of the roof, restrictions
(2)–(5) are required as before. Prior to solving
this problem (for example with the simplex al-
gorithm as implemented in GLPK), one can first
improve orthogonal structures by computing (1).
Condition (5) maintains these structures.

While we have been concerned with aligning
roof edges of LoD 2 building models, these tech-
niques can also be applied to beautification of
LoD 3 models. A deep learning based method
for adding facade details based on optimized LoD
2 models is described in [28]. To cluster and align
windows and doors, the method also uses a mixed
integer linear program.

Coordinate changes due to the solutions of op-
timization problems might lead to self-intersec-
tions of polygons. Before we can apply further
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linear programs to correct roof facets’ planarity,
we eliminate such errors as described in the next
paragraph.

3.4. Correcting self-intersections

Each roof facet consists of exactly one outer
polygon and zero or more inner polygons that de-
fine openings within the roof. The outer polygon
is oriented counter-clockwise, the inner polygons
are oriented clockwise. CityGML does not allow
polygons to have self-intersections. However, such
intersections often do occur because of the roof’s
topology or because of over-simplification. Align-
ment to auxiliary lines in Section 3.1 and the lin-
ear programs in Section 3.3 might lead to self-
intersections. These algorithms do not process
single polygons but the graph of all roof edges.

Automatic repair of single 2D polygons is a
general task not restricted to building modeling.
Ledoux et. al describe a general method based on
triangulation of the interior in [29] and give some
literature overview, see also [30]. We use a simple,
specialized method for polygons that work on a
watertight 2.5D roof polygon mesh. The method
recursively splits up polygons to new polygons un-
til all intersections are eliminated. Then it re-
moves intersection-free new polygons that are not
needed for a watertight roof. We do this in the
x-y-plane and add height values (z-coordinates)
later. To begin with, we compute all points of self-
intersection. If an intersection point is no known
vertex, then we add it as a new vertex to the
polygon, cf. [31]. But we also add it to all other
polygons that cross that point. This is necessary
to easily decide about wall visibility, see Section 5.
Now, we have to split up each polygon at vertices
that occur more than once within the polygon.

To simplify the outer polygon, we have to dis-
tinguish between two general cases of self-intersec-
tion at a vertex: The polygon might really cross
itself (case a) ) or it is tangent to itself (case b) ).
We resolve intersections using two passes. The
first pass handles case a), the second one deals
with b):

a) This is an error situation that might occur if
one snaps vertices to other places like ridge

lines. For example, vertex A in Figure 15a)
might have been moved upwards. After di-
viding the polygon into non-self-intersecting
segments, all segments with clockwise ori-
entation (like the dark green triangle in the
figure) have to be removed. The space cov-
ered by this segment might also be shared
with multiple adjacent roof facets. To heal
this error in practice, it is often sufficient
to snap the wrong segment’s vertices to the
nearest vertex of the segment’s longest edge.

b) This is a regular situation. As in a), we split
up into non-self-intersecting polygons. We
discard polygons with zero area that occur
if there are edges that are used twice (dif-
ferent directions of traverse, see edges be-
tween vertices A and B in the second ex-
ample of Figure 15b)). All segments with
counter-clockwise orientation become new
outer polygons. The second example of Fig-
ure 15b) is resolved to two outer polygons.
All segments with clockwise orientation be-
come additional new inner polygons. This
happens in the first example of Figure 15b).

 a)

 b)

A A

A
A

A B

Figure 15: Resolving self-intersections [1].

To simplify previously existing inner polygons,
we first merge them if possible: We compute a list
of all edges of all inner polygons. Then we remove
edges that occur twice but with different direction
of traverse. We put together remaining edges to
new inner polygons. Then we split them up in
the same manner as the outer polygon with one
exception: Under the preliminary that openings

9



like the one in the first example of 15b) are not
part of the outer surrounding facet, openings of
inner polygons are not relevant, we do not have to
recursively generate inner polygons of inner poly-
gons. Thus, such polygons are discarded.

Now, the roof facet is decomposed into a list of
one or more non-self-intersecting outer polygons
and a list of zero or more non-self-intersecting in-
ner polygons. For each inner polygon, we have
to find a unique outer polygon that surrounds it.
In rare cases of damaged roof topologies, such a
polygon might not exist. In such a case, the inner
polygon and all included polygons get discarded.
Then we can write a separate roof facet for each
outer polygon with its corresponding openings,
i.e., inner polygons.

For the square kilometer of the city center, the
algorithm has to resolve 174 points of self-inter-
section with crossing. These points result from
merging vertices and snapping vertices to ridge
lines. Also, polygons are separated at 450 tangent
points.

4. Planarization of roof facets

CityGML offers primitives to describe planar
surfaces only. For example, dome roofs or curved
roofs have to be approximated by fragments of
planes. However, often CityGML models violate
planarity to some extend. The easiest way to heal
non-planar surfaces is to triangulate them. This
actually is done in practice, see [32]. More so-
phisticated algorithms optimize roof structures.
By locally adjusting a single roof facet to become
planar, adjacent facets might loose this property.
Therefore, in contrast to the algorithm in [15], we
solve a global optimization problem to establish
planarity of all roof facet’s at the same time. Due
to the linear nature of roof planes, linear program-
ming (cf. Section 3.3) appears to be an appro-
priate means to also deal with this problem. The
approach differs from more general shape preserv-
ing algorithms based on non-linear optimization,
cf. [33, 34, 35] and the literature cited there. Non-
linear optimization of energy functions in fact is
standard in architecture reconstruction. Another
example ist the work of Arikan et al. [36]. They

use a Gauss-Seidel algorithm to snap together po-
lygons.

In brief, the basic idea behind our linear pro-
gram is presented in [37]. Here we give an ex-
tended description covering additional rules and
refinements that are necessary to make the solu-
tion work in practice.

Pk, k ∈ {1, 2, . . . , n}, denotes a roof polygon
with vertices pk,1, . . . , pk,mk

∈ V ,

pk,j = (pk,j.x, pk,j .y, pk,j.z),

where V ⊂ R
3 is the roof’s finite vertex set. Via

V , different polygons might share vertices.
The task is to replace z-coordinates pk,j.z with

new height values

pk,j.h = pk,j.z + pk,j.h
+ − pk,j.h

−,

pk,j.h
+, pk,j.h

− ≥ 0, such that the polygons be-
come planar. Since polygons are coupled via z-
coordinates of shared vertices, this is a global op-
timization task. In contrast to the mixed integer
linear program in Section 3.2, we do not change
x- and y-coordinates during this processing step.
This is important to keep both given footprints
and rectangular structures as well as to obtain a
linear optimization problem. A related approach
for quadrangular meshes is presented in [38]. It
propagates z-coordinate changes by solving linear
equations to keep surface elements planar.

By changing z-coordinates, visibility of outer
walls do change. Since we deal with LoD 2, we
can completely replace all wall polygons by new
ones only depending on the planarized roof facets,
see Section 5.

For each polygon Pk, we determine three non-
collinear vertices pk,u, pk,v, and pk,w such that, if
projected to the x-y-plane, pk,u and pk,v have a
largest distance. Then pk,w is selected such that
the sum of x-y-distances to pk,u and pk,v becomes
maximal and vectors ~ak := (pk,u.x−pk,v.x, pk,u.y−
pk,v.y) and ~bk := (pk,w.x − pk,v.x, pk,w.y − pk,v.y)
become linear independent.

We compare all vertices of Pk with the refer-
ence plane defined by points (pk,u.x, pk,u.y, pk,u.h),
(pk,v.x, pk,v.y, pk,v.h), and (pk,w.x, pk,w.y, pk,w.h).

According to CityGML guidelines, one has to
consider all combinations of three non-collinear
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vertices and compare against the corresponding
planes (see [39, p.5]). But for numerical stabil-
ity, we restrict ourselves to the previously selected
vertices with large distances.

Each point (pk,j.x, pk,j .y), j ∈ {1, . . . ,mk},
can be uniquely written as linear combination

(pk,j.x, pk,j .y) = (pk,v.x, pk,v.y) + rk,j~ak + sk,j~bk

with scalars rk,j, sk,j.

ck,j := −pk,j.z + (1− rk,j − sk,j)pk,v.z

+rk,jpk,u.z + sk,jpk,w.z,

we introduce auxiliary variables αk,j via (see [1])

αk,j := −pk,j.h
+ + pk,j.h

−

+(1− rk,j − sk,j)(pk,v.h
+ − pk,v.h

−)

+rk,j(pk,u.h
+ − pk,u.h

−)

+sk,j(pk,w.h
+ − pk,w.h

−) + ck,j. (6)

If the facet Pk is planar then αk,j = 0 for all j.
But because coordinates typically are rounded to
three decimals in CityGML model files, we have
to allow αk,j to be within certain bounds:

−δk ≤ αk,j ≤ δk.

To define bound δk, let νk be the reference plane’s
normal vector. Since the plane belongs to a roof
facet, we can assume νk.z > 0. Let µ be an error
threshold (for example µ := 0.001 m if coordi-
nates are given in millimeters), then [1]

δk := µ+

√
1− νk.z2

νk.z
·
√
2 · µ. (7)

This means that each vertex pk,j has to be closer
to the reference plane than

νk.z · δk = µ
(

νk.z +
√
2
√

1− νk.z2
)

.

The right side reaches a maximum for νk.z =
1/
√
3 so that the maximum distance to the plane

is less or equal
√
3µ.

In bound (7), the first summand µ allows z-co-
ordinates to vary up to µ. The second expression
is constructed to take care of deviations into x-
and y-directions up to µ. Depending on the nor-
mal νk, such deviations result in height changes

on the reference plane that are up to a magnitude

of

√
1−νk.z

2

νk.z
·
√
2·µ. If the roof facet has large slope

and appears to be nearly vertical, then νk is close
to zero and we allow large deviations of z coordi-
nates. When processing the reference data, such
larger bounds in fact are required to maintain the
shape of some tower roofs, see Figure 16.

Figure 16: If one chooses µ as a bound for height changes
and does not consider rounding errors of x- and y-coordi-
nates, then linear optimization changes the shape of the
tower (from left to right) [1].

It might be necessary to make changes to cer-
tain roof vertices more expensive. For example,
this is the case if vertices belong to facades that
should be textured with photos (cf. Figure 17).
Such vertices often have x- and y-coordinates that
also occur within the terrain intersection curve
of a building. We introduce costs to the objec-
tive function in terms of the weights ω(p). Such
weights do not influence the existence of solutions.

Summing up, we use a linear program with
structural variables p.h+ and p.h− for p ∈ V , aux-
iliary variables αk,j, k ∈ {1, . . . , n}, j ∈ {1, . . . ,
mk}, and weights ω(p), p ∈ V , see formulas (6,
7):

minimize
∑

p∈V

ω(p)[p.h+ + p.h−]

s.t. p.h+, p.h− ≥ 0, −δk ≤ αk,j ≤ δk for all p ∈ V ,
k ∈ {1, . . . , n}, j ∈ {1, . . . ,mk}.

We are looking for a global minimum that al-
ways exists because each flat roof is a feasible so-
lution. But the global minimum might require
large height changes for single vertices. To this
end, we also introduce a bound ε > 0 for height
changes at each vertex [1]:

p.h+ ≤ ε, p.h− ≤ ε for all p ∈ V.
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Figure 17: Texturing of facades requires higher precision of
z-coordinates. Black areas between textures and roofs in-
dicate that walls are too high whereas slopes of roof facets
are too small [1].

If one chooses ε too small, then there might be no
feasible solution. Therefore, we start planariza-
tion of a building with a small value (ε = 0.1 m)
and then iteratively double it until a solution is
found.

Figure 18: Shed roofs (or dormers etc.) have walls (step
edges) within a roof [1].

If a vertex in V belongs to two polygons then
both polygons keep the same z-value at this posi-
tion. Different z-values require different vertices.
If there are vertices with same x- and y-coordi-
nates but different z-values (see Figure 18), then
in an optimal solution the order of their z-coordi-
nates might be different. Then the set of visible
walls and the appearance of the roof might also
change. To avoid this, we sort the vertices by
increasing z-coordinates. Let v1, · · · , vl ∈ V be
vertices with vi.x = vj.x, vi.y = vj.y, 1 ≤ i, j ≤ l
and v1.z ≤ v2.z ≤ · · · ≤ vl.z. For 1 ≤ i < l we
add constraints [1]

vi+1.z+vi+1.h
+−vi+1.h

−−vi.z−vi.h
++vi.h

− ≥ 0.
(8)

Although we use weights to make changes to
facades more expensive, experiments show that
vertices of upper wall edges might change their
heights independently. Vertices with the same
original height then might get different z-coordi-
nates so that corresponding facade edges get a
wrong slope. Therefore, we collect all pairs of

vertices of upper facade edges for which the ver-
tices have approximately the same z-coordinates.
Then we add rules that ensure that for each pair
the new height values do not differ to much from
each other.

Also, one has to add lower bounds v.z+v.h+−
v.h− ≥ b to ensure that changed height values are
not below the ground plane z-coordinate b of each
building.

If two roof polygons share three or more non-
collinear vertices then optimization can’t find dif-
ferent planes for these polygons. Therefore, prior
to running the linear program, we analyze se-
quences of three consecutive non-collinear vertices
that are shared with same z-coordinates between
each two roof facets. If one roof facet is an inner
polygon of the other facet then we merge both roof
segments. This reduces the number of roof facets
and simplifies the model. Otherwise, we split up
middle vertices into two separate vertices. For-
mally this requires V to be a multi-set instead of
the set used here. In such situations, optimization
might lead to artificial step edges.

The linear program changes normal vectors of
roof segments. We allow that. But if one wants to
exclude such solutions that involve larger changes
of normal vectors, one can add further restrictions
to the linear program that bound x- and y-coordi-
nates of normal vectors only to vary in a certain
range defined by κ ≥ 0. In order to keep con-
straints linear in p.h = p.h+ − p.h−, we do not
normalize cross products of vectors that contain
structural variables. Let ν̃ := (pk,v−pk,u)×(pk,w−
pk,u) then conditions read (1 ≤ k ≤ n, [1]):

|(pk,v.y−pk,u.y)(pk,w.h−pk,u.h)

−(pk,v.h−pk,u.h)(pk,w.y−pk,u.y)− ν̃.x|
≤ κ|ν̃|,

|(pk,v.h−pk,u.h)(pk,w.x−pk,u.x)

−(pk,v.x−pk,u.x)(pk,w.h−pk,u.h)− ν̃.y|
≤ κ|ν̃|.

Due to the strong restrictions, optimization may
fail for some buildings so that their roofs keep un-
evennesses. There is a trade-off between planarity
and authenticity of roof slopes.
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Figure 19: Numbers of planarized buildings depending on
the choice of ε with regard to the one square kilometer of
reference data (left) and a larger area of 16 square kilome-
ters covering the city center of Krefeld (right). Numbers
are given both for our data driven model as well as for the
model-driven North Rhine Westphalian model.

In our data-driven reference data set, 59% of
buildings become 0.001-approximate planar if we
set threshold value ε to 0.1. We do not use GL-
PK’s exact rational arithmetic because of per-
formance issues. The standard float arithmetic
causes some rounding errors. If we apply the algo-
rithm to its own output, then we see that still not
all buildings have approximate planar roof facets.
But then all buildings become approximate planar
with ε = 0.1. Thus, the true share of buildings
that are already given with approximate planar
roof facets is up to 59%.

If we successively double ε to 0.2, 0.4, 0.8, 1.6,
and 3.2, an additional number of 11%, 10%, 10%,
6%, and 3% of buildings become approximate pla-
nar through optimization. All buildings become
approximate planar by choosing ε = 6.4. Figure
20 shows what happens to the complex roof of
a church. Running time for processing all build-
ings of the square kilometer with a single-threaded
implementation is less than five seconds on an i5
processor. For about 1% of buildings, enforcing
planarity leads to visible changes of roofs’ appear-
ances (z-coordinate errors of more than 2 m).

We also applied the algorithm to the corre-
sponding model-driven North Rhine Westphalian
model. With ε = 0.1, 98, 7% of buildings are
0.001-approximate planar after optimization, i.e.,
they can be considered as correctly modeled. By
successively doubling ε, an additional number of
0.4%, 0.3%, 0.3%, and 0.2% of buildings become
approximate planar. All buildings become ap-

proximate planar with ε = 3.2. Figure 19 sum-
marizes these results. It also shows outcomes for
a larger area covering 16 square kilometers.

Figure 20: The upper model shows triangulated, non-
planar roof facets. Different colors indicate different facets.
Within a facet, roof triangles have different slopes. The
second image is the result of planarization. It is free of
such artifacts [1].

If one deals with a city model that already has
planar roof facets but shows artificial step edges
to allow for planarity, linear optimization can be
also used to eliminate step edges while at the same
time planarity is maintained. To this end, height
differences

v.z + v.h+ − v.h− − u.z − u.h+ + u.h−

have to be minimized for each pair of vertices
u, v ∈ V with u.x = v.x, u.y = v.y, and u.z ≤ v.z,
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where v.z − u.z is less than a threshold bound β
for unwished step heights like β = 0.5 m. Please
note that constraints (8) ensure that such differ-
ences are non-negative. For such vertices u and v,
we add summands w·(v.h+−v.h−−u.h++u.h−) to
the original objective function

∑

p∈V ω(p)[p.h+ +
p.h−], where w is a large weight that forces height
differences to be smaller than a given precision
(if compatible with constraints) whereas the orig-
inal objective function avoids unnecessary height
changes. For example we set w to the overall num-
ber of variables times εmax{ω(p) : p ∈ V }/(µ/2).
By allowing local height changes up to ε := β, the
linear program of Section 4 then minimizes step
edges with height differences below ε. If compli-
ant with auxiliary conditions, height differences
become smaller than precision so that step edges
vanish. Unfortunately, it turns out that in prac-
tice the optimization of step edges leads to visible
roof changes similar to the changes caused by pla-
narization.

We developed a workflow to generate City-
GML models from cadastral footprints and air-
borne laser scanning data, see [18]. Within that
workflow, we use GLPK’s simplex algorithm for
planarization. Overall processing time for the en-
tire reconstruction of Leverkusen’s 66,400 build-
ings on 79 square kilometers is about four hours
on two cores of an i5 processor with 4 GB of RAM.
The simplex algorithm theoretically has an ex-
ponential worst-case running time but turns out
to be extremely fast for our small optimization
problems. It’s share of processing time for the
Leverkusen data set only is about five minutes.
With respect to worst-case situations, the sim-
plex algorithm could be replaced by an interior
point method so that the optimization step runs
in polynomial time.

5. Post-processing of walls

Coordinate changes of roof vertices do change
the set of a building’s outer walls. Since all walls
are determined by roof edges and the height value
of the building’s ground plane, we can discard
given, no longer fitting walls. For each oriented
edge of each roof polygon, we generate a new ver-

Figure 21: Walls of a conference center and theatre are dis-
played as wire frames, if their normal vector points away
from the view point. Otherwise they are painted grey.
The first figure shows the model with uncut walls. The
second picture only shows parts of walls that are visible
from the outside of each single building (without consid-
ering neighbor buildings). The view points through the
ground surface to the sky [1].

tical wall that reaches from the roof edge down to
the ground plane of the building. At this point
in time, each generated wall polygon has four dif-
ferent vertices, and each roof facet owns a com-
plete set of surrounding walls. To generate a well-
formed CityGML model, we now have to cut off
invisible parts of the walls for each single building,
see Figure 21. We do not remove walls between
different buildings. Visible walls do not only occur
in connection with the building’s footprint. Step
edges also occur within the interior of a roof, see
Figure 18.

For cutting, we use the precondition that no
vertex of a roof or wall polygon lies on the inner
part of any roof or wall edge. Thus, any vertex
also is a vertex of all adjacent polygons. There-
fore, we can determine visibility by comparing
the pair of upper vertices of each wall with all
roof edges between pairs of vertices that have the
same x- and y-coordinates as the two wall vertices.
With one exception, there can be at most two
roof edges that fulfill this condition. The excep-
tion is the existence of openings that are modeled
using inner polygons. Other roof facets can be
positioned within openings. If two inner polygons
share a common edge, then there might be up to
four roof edges that have to be considered. Thus
we exclude walls that belong to edges shared be-
tween inner polygons from further considerations
since they do not belong to the building. The
procedure in Section 3.4 takes care of this.
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Obviously, there has to be at least one roof
edge with the same vertex coordinates as the up-
per wall vertices. If there is a second roof edge
with exactly these coordinates (including z-co-
ordinates), then the edge is a ridge line and no
wall is needed. If there is no second other roof
edge with same x- and y-coordinates (and arbi-
trary z-coordinates), then we deal with an outer
wall belonging to the building’s footprint. This
wall is completely visible. There are three remain-
ing cases, see Figure 22:

a) z-coordinates of the upper wall vertices are
both greater than the corresponding z-co-
ordinates of the second roof edge: In this
case, the lower edge of the wall has to be
replaced by the roof edge.

b) z-coordinates of the upper wall vertices are
both less or equal to the corresponding z-co-
ordinates of the second roof edge: The wall
completely is invisible because it is adjacent
to a higher segment of the building.

c) One z-coordinate of the upper wall vertices
is greater or equal and one z-coordinate is
less or equal to the corresponding z-coordi-
nate of the second roof edge: Only a triangle
part of the wall is visible. A new vertex has
to be introduced at the intersection point
between the two edges. The wall polygon
is replaced by a triangle, and the new ver-
tex also has to be inserted to affected roof
polygons.

Case c) is the reason why we cut off invisible parts
of walls only after the planarization step (Section
4). Optimization leads to different slopes of roof
edges, so that intersection points might change x-
and y-coordinates. If we would add these intersec-
tion points before optimization takes place, then
we would pin together both roof facets and do not
allow x- and y-coordinate changes. This reduces
the number of feasible solutions and might change
the appearance of the roof.

For the tested square kilometer, 11,015 z-co-
ordinates of wall polygons are modified according
to case a), 36,619 wall polygons are removed along

 a)  c) b)

Figure 22: Visibility analysis of walls: Red polygons rep-
resent walls and black edges are parts of roof facets [1].

case b), and 8,394 walls are replaced by a triangle
as described in case c).

Finally, adjacent walls with equal orientation
can be merged to larger polygons. This happens
15,416 times.

6. Conclusions and further work

We applied the presented techniques to im-
prove data-based city models of the cities of Kre-
feld, Leverkusen, and Dortmund. According to
cadastral requirements, their building models do
not overlap cadastral footprints. But in reality,
there are roof overhangs. Also, cadastral foot-
prints might not exactly match the outer hull of a
building. Both aspects in connection with merg-
ing data from different sources have impact on
precision. Figure 23 shows buildings that are tex-

Figure 23: Shift of texture (left facades do not reach to the
roof, right facades do match) indicate model’s precision.

tured with oblique arial photos based on a plane’s
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position data. One can clearly see that wall tex-
tures do not fit precisely. Because of the airborne
camera’s outer orientation, a horizontal shift by
the thickness of a wall directly leads to a vertical
shift of texture by the same magnitude. Build-
ings in the figure exactly match with cadastral
data but do not match with oblique areal im-
ages. Based on such images, not only further
improvements of CityGML models seem possible
but also generated recommendations for cadastral
footprint corrections.
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