
Application of hierarchical clustering for object
tracking with a Dynamic Vision Sensor∗

Tobias Bolten1, Regina Pohle-Fröhlich1, and Klaus D. Tönnies2

1 Hochschule Niederrhein - University of Applied Sciences, Institute of Pattern
Recognition, Krefeld, Germany, {tobias.bolten,regina.pohle}@hs-niederrhein.de

2 University of Magdeburg, Department of Simulation and Graphics, Magdeburg,
Germany, klaus@isg.cs.uni-magdeburg.de

Abstract. Monitoring public space with imaging sensors to perform
an object- or person-tracking is often associated with privacy concerns.
We present a Dynamic Vision Sensor (DVS) based approach to achieve
this tracking that does not require the creation of conventional grey- or
color images. These Dynamic Vision Sensors produce an event-stream of
information, which only includes the changes in the scene.
The presented approach for tracking considers the scenario of fixed mounted
sensors. The method is based on clustering events and tracing the re-
sulting cluster centers to accomplish the object tracking. We show the
usability of this approach with a first proof-of-concept test.

Keywords: Object tracking · Dynamic Vision Sensor · Event clustering

1 Introduction

In the field of computer-vision automated object detection and tracking are chal-
lenging topics. Over the past decades, various approaches have been developed.
In [1,2,3] methods under evaluation of the optical flow are considered, whereas in
[4,5,6] variations of the Kalman filter and in [7,8,9] techniques of deep-learning
based approaches are utilized.

However, these approaches are using conventional, frame-based (grey-value)
images captured by classical CCD- or CMOS imagers [10]. Depending on the
domain of application, this type of recording can quickly lead to problems with
the privacy awareness of potential users (especially in in-home environments) or
in the case of public places in complex legal issues [11].

The described use case of object tracking in this paper is part of a project
whose goal is to improve the planning of public open space by including the
specific user behavior in the basic urban design process. For this purpose, it is
planned to construct a distributed, sensor-based system in order to automatically
derive various parameters of the considered area. In the first step, we focus on
the task of object detection and tracking to derive information about the number
of users and their movements.
∗This work is part of the project “plsm” which is founded by the European Regional

Development Fund under the grant number EFRE-0801082.

This is a self-archived version of a paper that appeared in the Proceedings of
the ICCS 2019, Lecture Notes in Computer Science, vol 11540, Springer, pp.
164-176 (2019). The final authenticated version is available online at: https:
//doi.org/10.1007/978-3-030-22750-0 13

https://doi.org/10.1007/978-3-030-22750-0_13
https://doi.org/10.1007/978-3-030-22750-0_13


2 T. Bolten et al.

To overcome privacy concerns and restrictions by laws, we suggest the utiliza-
tion of an alternative image sensor, the so-called Dynamic Vision Sensor (DVS).
This type of sensor is biological inspired and works not in a frame-based manner.
Instead it transmits the changes within a scene in an asynchronous way when
they happen.

The paper is structured as follows: In section 2 the DVS and its functionality
are described. A filtering and clustering approach for object tracking based on
a DVS is presented in the subsequent section. In section 4 a simple proof-of-
concept comparison of the DVS solution to a classical image-processing solution
is presented. Section 5 concludes with a short summary.

2 Dynamic Vision Sensor

CCD- or CMOS imagers typically operate at a fixed frame rate and produce
a constant data stream independent of changes in the considered scene. This
can lead to high redundancies in the individual captured frames. In contrast to
this, the pixels of a Dynamic Vision Sensor operate independently and asyn-
chronously, based on relative light intensity changes in the scene. This approach
is, as a part of neuromorphic engineering, borrowed from biology. For this reason,
DVSs are also called “silicon retinas”.

Each pixel of a DVS only transmits an information (called an event) when
a change in intensity greater than a pre-defined threshold is measured. As a
consequence, a static scene generates no sensor output at all.

The output of this sensor is typically encoded as a sparse stream in an
Address-Event Representation (AER). Each event in this stream includes [12]:

(x, y)-Coordinate:
The pixel coordinate in the sensor array that triggered the event.

Timestamp:
The time of the occurrence of the event. Typically, in a resolution range of
milliseconds.

Meta information:
Depending on a specific sensor model, e.g. the polarity of an event (ON :
change from dark→ bright, OFF : change from bright→ dark) or the bright-
ness value at the moment of the event generation (greyscale value).

Lichtsteiner et al. mentions in [12] that the first sensor of this type was
developed in the mid-1990s. An overview of subsequent developments can be
found in [13]. In the scope of this work, we used the “CeleX-IV” sensor, which
is developed by Hillhouse Technology [14]. This sensor offers a 768 × 640 pixel
array resolution, a high-speed AER output with 200Meps (events per second)
and a high dynamic range of ≈ 120dB.

Figure 1 shows an example scene captured with this sensor. In Figure 1a the
scene is displayed as a greyscale image, whereas Figure 1b shows the visualization
of a 60ms time window of event data as a binary image. Each pixel, where at least
one event occurred in the time window, is set to white. Figure 1c illustrates the



Hierarchical clustering for object tracking with DVSs 3

(a) Greyscale reference (b) Binary event visualization in a 60ms
time window

(c) Spatiotemporal visualization of six continuous 60ms time windows (color-
coded)

Fig. 1: Example visualizations of AER data captured with a CeleX IV-DVS



4 T. Bolten et al.

spatiotemporal information within the stream of events. Each of the six colors in
this figure represents a time window of 60ms (total 360ms) of events. The burst
of events at the position of the moving human and the tree waving in the wind
are clearly visible in these visualizations.

3 Event-Clustering as a basic tracking approach

Fig. 2: Suggested processing-chain for object tracking

Based on the inherent properties of the event-based vision sensor, we propose
the processing-chain in Figure 2 to achieve a tracking of moving objects. For
this we use a neighborhood-based event filter as a pre-processing step, followed
by a hierarchical clustering and a tracing of cluster centroids. These steps are
explained in the following sub-sections. Our implementation is based on slicing
the continuous event-stream in non-overlapping blocks of a fixed time length
(following referred as sliding time window) and the processing of each of these
blocks.

In addition to the privacy benefits (no grey- or color-value information of the
scene is needed) offered by the sparsely populated event stream of a DVS, this
approach offers the possibility to achieve a solution with little need of computa-
tional and power resources. An important point is, that the static background
of the scene does not have to be considered. Especially in the context of sensor
networks this can be a great advantage.

3.1 Event-Filtering

Figure 1b and 1c clearly shows that there is significant sensor noise in the
recorded signal, which prevents a sensible use of clustering approaches. There-
fore, we suggest a simple filtering step exploiting the spatial and temporal neigh-
borhood for pre-processing. For each event, the number of other events in the



Hierarchical clustering for object tracking with DVSs 5

(a) Visualization of considered filter-
neighborhood

(b) Filtered binary event visualization
in a 60ms time window

(c) Result of the filter applied to data from Figure 1c

(d) Filter effect on the event count per sliding time window

Fig. 3: Visualization of the event filtering step



6 T. Bolten et al.

von-Neumann neighborhood (4-neighborhood) within the current sliding time
window is calculated as

f(eventx, eventy) =
∑

t∈time window

count(eventx ± 1, eventy ± 1, t) (1)

Figure 3a clarifies the considered spatio-temporal neighborhood for an event. An
event is rejected when f(eventx, eventy) < threshold.

We suggest setting the threshold value depending on the width of the under-
lying sliding time window. We have chosen the value empirically and set it to
1/8 of the sliding window in ms. The filtering result is shown in Figures 3b and
3c (compare with the unfiltered version in Figure 1).

This filtering drastically reduces the number of events which must be pro-
cessed in the next step, while preserving most of the events from the desired
objects. The effect on the average number of events per sliding window is shown
exemplarily in Figure 3d based on various recordings (compare with section 4).
Within this pratical example a reduction of about 96% on the average event
count per sliding window was achieved.

3.2 Hierarchical clustering

(a) Sliding window t1 (b) Sliding window t2

(c) Magnified cluster from 4a (d) Magnified cluster from 4b

Fig. 4: Color-coded result of clustering at different sliding windows



Hierarchical clustering for object tracking with DVSs 7

Fig. 5: Highlighted path of tracked center points between sliding window t1 and
t2 (compare with Figure 4)

The next step in the processing chain consists of clustering the pre-filtered
events to get semantic related groups of events. As the number of clusters (mov-
ing objects) in the scene is not known a priori, a hierarchical clustering approach
is used.

We use a hierarchical single-link clustering (provided by the “fastcluster”-
library [15]) based on the euclidean distance of the (x,y)-coordinates of the
pre-filtered events. The clustering break point is controlled by a pre-defined
cutoff-distance. Only clusters consisting of a minimum number of events are
considered for further processing. Figure 4 illustrates the result of the clustering
step at two different sliding windows in the form of color-coded clusters.

The Table 1 summarizes all parameters and their selected values of our pre-
sented approach.

3.3 Cluster path tracking

For each cluster resulting from the previous step, the center point is calculated.
Based on this center point, the objects are traced over the time, i.e. over succes-
sive sliding time windows. Two center points from clusters in consecutive sliding
time windows are considered as semantically linked when their euclidean distance
is smaller than a pre-defined threshold (see Table 1). If there is no other point
within this distance, the corresponding cluster is interpreted as a new object.

Table 1: Parameter setting overview
Parameter Setting used in our experiments

DVS-Record: sliding time window 60 ms
Event-Filter: threshold 1/8 · sliding window length [ms]
Clustering: cutoff distance 50 px
Clustering: minimal cluster size 100 events
Cluster path tracing: maximum center distance 50 px



8 T. Bolten et al.

Table 2: Scene description within recorded data
Recordname Description of scene # of sliding

time windows

Rec 0 Pedestrian crossing, partially obscured by a tree 310
Rec 1 Pedestrian crossing, partially obscured by a tree 359
Rec 2 Pedestrian crossing, partially obscured by a tree 292
Rec 3 Pedestrian crossing 343
Rec 4 Cyclist crossing, partially obscured by a tree 259
Rec 5 Pedestrian crossing, partially obscured by a tree 303
Rec 6 Cyclist crossing, partially obscured by a tree 225
Rec 7 Riding lawn mower crossing 502

The result of tracking these cluster center points is exemplified in Figure
5, which shows the tracked path between the two sliding windows displayed in
Figures 4a and 4b.

4 Proof of Concept

The presented cluster-based tracking approach on event-based vision informa-
tion focuses currently on the special use case of a fixed mounted sensor and
moving objects in the monitored scene. Due to the fact that the research area of
event-based computer vision is fairly new, there is a lack of well-known standard
databases covering various use cases and different DVS-sensor resolutions and
characteristics.

Hu et al. [16] are describing an approach to convert “classical” frame-based
vision datasets into synthetic event-based datasets. But the converted databases
are not addressing the described use case of object tracking and the conversion
tries to simulate a DVS sensor with a smaller sensor resolution than the one
used in our practical experiments (see section 2). Hence, creating synthetic con-
verted data for our specific sensor will produce artefacts. Thus, we decided to
use a small, self-recorded database for the first proof-of-concept of the proposed
approach. Table 2 briefly summarizes the considered scenes within this dataset.

The following subsections present an alternative tracking approach using
a frame-based imaging technique which is compared with the proposed DVS-
clustering method.

4.1 Comparative approach: difference image

Due to privacy concerns that need to be considered (compare with the project
description in the introduction), it is not possible to use “classical” greyscale or
color images to monitor the desired space. One possible option from the field of
image processing is the approach of using difference images and binarization.

For this purpose, a recording of the background (scene without any objects,
see Figure 6a) is taken. Each frame of the actual recording (see Figure 6b) is



Hierarchical clustering for object tracking with DVSs 9

(a) Background (b) Considered scene

(c) Calculated binary difference image (d) Morphological (Opening, 3x3 cross)
filter result

Fig. 6: Visualization of the described privacy aware ’classical’ imaging approach



10 T. Bolten et al.

compared with this background in that the difference between these two images is
calculated. To ensure the privacy concerns this difference image can be binarized
(see Figure 6c), so that no restoration of color- or greyscale values is possible.

Similar to the described filtering of DVS-events this approach allows also the
use of a filtering as an additional step. In this case, the use of morphological
operations is one possible way. Figure 6d shows the filtered result which arises
when using a morphological opening operation with a 3x3 cross-structure kernel
element.

Based on these images the use of well-known computer vision object tracker
is possible. For comparison we used the implementations‡ in the openCV-library
[17].

4.2 Comparison: Event-Clustering & openCV-tracker

Compared to the presented clustering procedure on the DVS event data, the
implementations of the openCV trackers require a bounding box, which includes
the object to be tracked, as input parameter. Due to this fact, we decided to
compare the two approaches on the basis of the tracked path of this selected
object. This means, that in terms of this proof of concept comparison a single
object tracking is performed, although the DVS clustering-based approach could
track multiple objects in a scene.

For the two approaches the algorithmically determined object center is com-
pared to a manually defined ground-truth position. In case of the DVS-clustering
this object center is the cluster center point and for the openCV-tracker the cen-
ter point from the points within the returned object bounding box is used. By
estimating this center point over continuous sliding time windows (or the gen-
erated and filtered binary images), an object path is determined. An example is
given by the red line in Figure 5.

For the quantitative comparison of these paths in comparison with the ground-
truth path the dynamic time warp distance is used [18]. This distance measure
allows the determination of similarity even for different lengths of results.

In Figure 7 the calculated distances for the DVS-clustering approach, and for
six different in openCV implemented object tackers (for details please compare
with openCV documentation) are shown. The distance values for each of the
openCV trackers is averaged over 15 different executions with identical initial
parameters to compensate stochastic effects within some of the trackers. In the
considered footage (compare with Table 2) our event-based approach, with one
major exception, is comparable or better than the openCV-trackers.

The presented approach fails in Rec7 due to the performed event filtering
step. The Figure 8a shows the unfiltered events which are generated by the
object and Figure 8b contains the corresponding filtered events, whereas Figures
8c and 8d show that too many events are removed in the further course of the
recording. As a result, the minimal cluster size condition (compare with Section
3.2) is not reached. Therefore, the continuous tracking of the object is lost.

‡see https://docs.opencv.org/3.4.2/d0/d0a/classcv 1 1Tracker.html

https://docs.opencv.org/3.4.2/d0/d0a/classcv_1_1Tracker.html


Hierarchical clustering for object tracking with DVSs 11

(a) No morphological post-processing on binary difference images

(b) With morphological opening as post-processing on binary difference images

Fig. 7: Calculated path distances for DVS-clustering and six different object
trackers implemented by openCV



12 T. Bolten et al.

(a) Plain tx (b) Filtered tx (c) Plain ty (d) Filtered ty

Fig. 8: Magnified selection of unfiltered and filtered events in Rec7

5 Conclusion

We presented an initial approach to track moving objects by clustering and
tracing their center points based on event data from a Dynamic Vision Sensor.
Our method is simple and fast, while respecting possible privacy concerns of
depicted persons.

The method is currently implemented on standard PC hardware. Since fil-
tering of the event data significantly reduces the number of events, outsourcing
the filter stage to a FPGA would enable implementation on less powerful micro-
processors.

Another important aspect for further research is the creation and publication
of a larger event-based database with corresponding ground truth annotations to
allow a systematic evaluation that goes beyond the presented proof-of-concept
test.

Also, the improvement of the presented approach itself is an aspect for further
research. The time information for each event (which has a resolution of millisec-
onds) is mostly unused in the current approach, which represents potential for
additional improvement.

References

1. A. Ranftl, F. Alonso-Fernandez and S. Karlsson, “Face Tracking Using Optical
Flow,” 2015 International Conference of the Biometrics Special Interest Group
(BIOSIG), Darmstadt, 2015, pp. 1-5.

2. Y. Liu, Y. Lu, Q. Shi and J. Ding, “Optical Flow Based Urban Road Vehicle Track-
ing,” 2013 Ninth International Conference on Computational Intelligence and Secu-
rity, Leshan, 2013, pp. 391-395.

3. L. Dan, J. Dai-Hong, B. Rong, S. Jin-Ping, Z. Wen-Jing and W. Chao, “Moving
object tracking method based on improved lucas-kanade sparse optical flow algo-
rithm,” 2017 International Smart Cities Conference (ISC2), Wuxi, 2017, pp. 1-5.

4. C. M. Bukey, S. V. Kulkarni and R. A. Chavan, “Multi-object tracking using Kalman
filter and particle filter,” 2017 IEEE International Conference on Power, Control,
Signals and Instrumentation Engineering (ICPCSI), Chennai, 2017, pp. 1688-1692.



Hierarchical clustering for object tracking with DVSs 13

5. X. Mu, J. Che, T. Hu and Z. Wang, “A video object tracking algorithm combined
Kalman filter and adaptive least squares under occlusion,” 2016 9th International
Congress on Image and Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI), Datong, 2016, pp. 6-10.

6. N. Najafzadeh, M. Fotouhi and S. Kasaei, “Object tracking using Kalman filter with
adaptive sampled histogram,” 2015 23rd Iranian Conference on Electrical Engineer-
ing, Tehran, Iran, 2015, pp. 781-786.

7. J. Redmon, A. Farhadi, “YOLOv3: An Incremental Improvement”, Technical Re-
port, arXiv:1804.02767, 2018

8. B. Mocanu, R. Tapu and T. Zaharia, “Single object tracking using offline trained
deep regression networks,” 2017 Seventh International Conference on Image Pro-
cessing Theory, Tools and Applications (IPTA), Montreal, QC, 2017, pp. 1-6.

9. K. Behrendt, L. Novak and R. Botros, “A deep learning approach to traffic lights:
Detection, tracking, and classification,” 2017 IEEE International Conference on
Robotics and Automation (ICRA), Singapore, 2017, pp. 1370-1377.

10. S. Mehta, A. Patel and J. Mehta, “CCD or CMOS Image sensor for photography,”
2015 International Conference on Communications and Signal Processing (ICCSP),
Melmaruvathur, 2015, pp. 0291-0294.

11. Q. Mahmood Rajpoot, C. Jensen, “Video Surveillance: Privacy Issues and Legal
Compliance”, Promoting Social Change and Democracy through Information Tech-
nology, IGI global, 2015, ISBN 9781466685024

12. P. Lichtsteiner, C. Posch and T. Delbruck, ‘A 128×128 120 dB 15µs Latency Asyn-
chronous Temporal Contrast Vision Sensor,” in IEEE Journal of Solid-State Cir-
cuits, vol. 43, no. 2, Feb. 2008, pp. 566-576

13. T. Delbrück, B. Linares-Barranco, E. Culurciello and C. Posch, “Activity-driven,
event-based vision sensors,” Proceedings of 2010 IEEE International Symposium on
Circuits and Systems, Paris, 2010, pp. 2426-2429.

14. M. Guo, J. Huang and S. Chen, ”Live demonstration: A 768×640 pixels 200Meps
dynamic vision sensor,” 2017 IEEE International Symposium on Circuits and Sys-
tems (ISCAS), Baltimore, MD, 2017, pp. 1-1.

15. D. Müllner, “fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for
R and Python,“ in Journal of Statistical Software, 53(9), 2013, pp. 1 - 18.

16. Y. Hu, H. Liu, M. Pfeiffer, T. Delbruck, “DVS Benchmark Datasets for Object
Tracking, Action Recognition, and Object Recognition,” in Journal Frontiers in
Neuroscience, 10, 2016, pp. 405-410.

17. G. Bradski, “The OpenCV Library,” in Dr. Dobb’s Journal of Software Tools, 2000
18. M. Müller, “Information Retrieval for Music and Motion”, Springer Berlin Heidel-

berg, 2007, pp. 69-84, ISBN 9783540740483


	Application of hierarchical clustering for object tracking with a Dynamic Vision Sensor

