
A Linear Program for Matching

Photogrammetric Point Clouds with CityGML

Building Models
This is a self-archived version of a paper that appeared in

Proceedings Operations Research 2017, Springer, Berlin, 2018, S.129-134

Steffen Goebbels, Regina Pohle-Fröhlich, and Philipp Kant

Abstract We match photogrammetric point clouds with 3D city models in order to

texture their wall and roof polygons. Point clouds are generated by the Structure

from Motion (SfM) algorithm from overlapping pictures and videos that in general

do not have precise geo-referencing. Therefore, we have to align the clouds with the

models’ coordinate systems. We do this by matching corners of buildings, detected

from the 3D point cloud, with vertices of model buildings that are given in CityGML

format. Due to incompleteness of our point clouds and the low number of models’

vertices, the standard registration algorithm “Iterative Closest Point” does not yield

reliable results. Therefore, we propose a relaxation of a Mixed Integer Linear Pro-

gram that first finds a set of correspondences between building model vertices and

detected corners. Then, in a second step, we use a Linear Program to compute an

optimal linear mapping based on these correspondences.

1 Introduction

CityGML is an XML-based description standard for city models (see [7]). Such

models are used for cadastral, planning and simulation purposes [2]. Each CityGML

polygon has a semantic meaning. Thus it represents either a wall or a roof facet or

a door, etc. On the other hand, textured (photo) meshes are often used for 3D visu-

alization. They just represent triangulated surfaces without considering the types of

objects they show. Their vertices can be taken from photogrammetric point clouds,

and triangles can be textured using the photogrammetric input data.

Most current CityGML models are given in a level of detail that requires build-

ings to only have walls, roofs, and a ground plane. To add detailed facades, we

Steffen Goebbels · Regina Pohle-Fröhlich · Philipp Kant

iPattern Institute, Niederrhein University of Applied Sciences, 47805 Krefeld, Germany

e-mail: {steffen.goebbels,regina.pohle}@hs-niederrhein.de, philipp.kant@stud.hn.de

1

2 Steffen Goebbels, Regina Pohle-Fröhlich, and Philipp Kant

want to map textured meshes onto CityGML polygons, see Figure 1. Based on such

textures, detection of windows and doors can be performed.

Fig. 1 The textured mesh to the left has to be aligned with the city model to the right.

To generate point clouds and textured meshes, one can use overlapping photos

or videos. Depending on the material’s source there might or might not be geo-

referencing. In general, it is possible to manually do a coarse registration with, for

example, the UTM (ETRS89) coordinate system. But precision might be not ad-

equate to directly map textured meshes to city models. One needs an automated

adjustment of the given coarse point cloud registration.

The Iterative Closest Point algorithm (ICP) is the standard non-feature-based

approach to align a roughly calibrated point cloud P with a calibrated cloud Q. It

estimates a transformation matrix A iteratively by greedily assigning each point of

cloud P to its nearest neighbor in cloud Q, measured in Euclidian l2 norm, cf. [9].

We generate point clouds and corresponding textured meshes from internet UAV

videos. Resulting clouds have large gaps but cover multiple building corners. For

principal, a direct ICP registration is possible with a point cloud Q that is sam-

pled from the city model and enriched with points of a digital terrain model. In our

case, Point Cloud Library’s ICP based on Singular Value Decomposition does not

yield reliable results or converges slowly in point-to-point mode. It performs better

in point-to-plane mode. However, running times exceed those of Linear Programs

by powers of ten. Therefore, we try to detect a set P of building corners in the pho-

togrammetric cloud. Then we align it with a set Q of vertices taken from a CityGML

model. Unfortunately, P and Q are both small and not all elements of P correspond

with model vertices in Q. For the data shown in Figure 1, Point Cloud Library’s ICP,

applied to align feature set P with Q, does not find enough correspondences. Instead,

we propose to use a Mixed Integer Linear Program (MIP) or a Linear Program (LP)

relaxation of this MIP. To obtain an LP description, we measure absolute distances

in l1 instead of l2 norm, see [4] for implications.

LP and MIP are established means in 3D modeling. For example, in [3] a MIP

is used to reconstruct surfaces from point clouds. An LP is used in [6] to heal non-

planarity in 3D city models. Coarse registration of point clouds based on MIP is

described in [10]. Also, a MIP is used to compute non-rigid matchings between

3D shapes based on small surface patches [12]. Wang et. al. [8, 11] use a MIP that

is a linearized min-max version of the quadratic assignment problem. They align

Matching Point Clouds with CityGML Building Models 3

two sets so that distances between points in one set correspond to distances between

matched points in the second set. But as in the definition of the quadratic assignment

problem, they match all points of the first set. In our application there might exist

no counterpart of a point of one set within the other.

We use an LP relaxation of a MIP to match a largest subset P′ of the cloud’s

building corners P with cadastral vertices Q. Finally, we compute a transformation

matrix A that adjusts P′ with correspondences in Q by executing another LP.

2 Detection of Corner Points and Linear Programs

To detect building corners, we first rotate the point cloud so that walls become verti-

cal. We do this based on RANSAC estimates of wall planes. Then we project points

to a density greyscale picture that represents the x-y-plane. Thereby, we exclude

green points because they most likely belong to vegetation and not to buildings. The

number of points projected to the same pixel determines the grey value of this pixel

so that, because of the initial rotation, vertical walls become clearly visible dense

lines, see Figure 2. After thresholding this picture to a binary mask, Harris corner

detector finds candidates for building corners, see circles in Figure 2. For each cor-

ner we select both its probable intersection point with the ground and its probable

intersection point with a building’s roof. To this end we look for the smallest and the

greatest z-coordinates of all points within a surrounding (with radius 1
3

m) of each

candidate. This results in two building corner points. Let P ⊂ R
4, P = {p1, . . . , pm}

be the set of all corner points in homogeneous coordinates, i.e. the fourth component

of each point is set to one. Thus, each corner point pi is given as a column vector

with coordinates pi.x, pi.y, pi.z, 1. We will align P with a set Q = {q1, . . . ,qn} of

vertices from a city model that are also given in homogeneous coordinates. To be

more concise, we put vertices of CityGML intersection lines between walls and ter-

rain into Q. For each such vertex, we also add the highest roof vertex with same x-

and y-coordinates to Q. Therefore, we get points with different height values, i.e.

z-coordinates, even for flat terrains. This will allow to compute z-coordinate scaling

and translation. Before any computation, we shift coordinates so that P’s center of

gravity becomes the origin. Small coordinates support numerical stability.

To find a transformation matrix A := (ak,l) ∈ R
4×4 with a4,1 = a4,2 = a4,3 = 0,

a4,4 = 1, that optimally aligns P with Q, we first define a MIP to detect a maximum

set of matching pairs of points pi ∈ P and q j ∈ Q. This is different to the 2D point

registration approach of Baird [1] that uses an LP (within a pruned search) to check

if a given set of pairs fulfills a registration property.

Since we require a coarse registration, distances between corresponding points

can be assumed to be shorter than a threshold value d (we use d = 6 m). Therefore,

we do not have to consider all pairs of points but only those within R := {(i, j) :

|pi −q j|< d for i ∈ [m] := {1,2, . . . ,m}, j ∈ [n]}.

Binary variables xi, j, (i, j) ∈ R, indicate whether points pi ∈ P and q j ∈ Q match.

Then xi, j = 1, otherwise xi, j = 0. A MIP determines an initial version of matrix A

4 Steffen Goebbels, Regina Pohle-Fröhlich, and Philipp Kant

Fig. 2 The upper left picture shows vertical density of the point cloud. In the upper right figure,

walls are textured with points that coincide with model facades after registration. Both pictures

in the second row show footprints of buildings (grey), candidates of walls detected from density

representation of point cloud (black) and their detected corners (circles). To the left, the situation

before transformation is shown. Walls of the point cloud differ significantly from footprints. Using

LP relaxation we find correspondences between detected corners and vertices of footprints. These

correspondences are marked with short black lines. Based on such pairs, the transformation matrix

is computed using an LP. The right picture shows the result of transformation. Short black lines

visualize corner movements.

that maps matching points to each other within a certain error bound. In a second

step, we then fine-tune the matrix A using an LP.

The MIP’s task is to find a largest number of matchings such that a transformation

matrix A exists so that for matching pairs (pi,q j) the coordinates of A · pi and q j are

within a small threshold distance ε > 0. Let M be a large number, for example twice

the greatest distance between points of P and Q. We find correspondences with the

following MIP for xi, j ∈ {0,1}, d+
i, j, d−

i, j ∈ (R≥0)4, (i, j)∈R, ak,l ∈R, k ∈ [3], l ∈ [4]:

Max ∑
(i, j)∈R

xi, j, s.t. ∑
i∈[m]:(i, j)∈R

xi, j ≤ 1 for j ∈ [n], and ∑
j∈[n]:(i, j)∈R

xi, j ≤ 1 for i ∈ [m],

d+
i, j −d−

i, j = q j −A · pi, max{d+
i, j.x,d

+
i, j.y,d

+
i, j.z,d

−
i, j.x,d

−
i, j.y,d

−
i, j.z}+Mxi, j ≤ ε +M.

A maximum might be obtained for a matrix A that cannot be described as a prod-

uct of matrices for scaling, rotation, and translation. For example, we have to avoid

mirroring. Thus, we seek a matrix A that is defined with small angles α,β , and γ
near to zero, scaling factors s1, s2, s3 near to one, and offsets d1, d2, and d3 for

translations:

Matching Point Clouds with CityGML Building Models 5















s1(cosα cosγ−sinα sinβ sinγ) −s1(sinα cosγ+cosα sinβ sinγ) −s1 cosβ sinγ d1

s2 sinα cosβ s2 cosα cosβ −s2 sinβ d2

s3(cosα sinγ+sinα sinβ cosγ) s3(cosα sinβ cosγ−sinα sinγ) s3 cosβ cosγ d3

0 0 0 1















≈















s1 −s1α −s1γ d1

s2α s2 −s2β d2

s3γ s3β s3 d3

0 0 0 1















.

Taylor expansion and omission of even smaller products of small angles lead to the

approximate version of A. As a heuristics to reduce the set of feasible matrices we

use threshold values δ = 0.3 and µ = 0.1 in connection with

1−δ ≤ ai,i ≤ 1+δ for i ∈ [3], −δ ≤ ai, j ≤ δ for i, j ∈ [3], i 6= j, (1)

−µ ≤ a1,2 +a2,1 ≤ µ , −µ ≤ a1,3 +a3,1 ≤ µ , −µ ≤ a3,2 +a2,3 ≤ µ . (2)

Instead of calling a MIP solver, it turned out to be sufficient to approximately

solve the MIP using LP relaxation. Thus we allow xi, j ∈ [0,1]. Based on an optimal

LP solution, we define the set R′ of pairs (i, j)∈R for which xi, j ≥ 1−4 ε
M

(instead of

selecting pairs with xi, j = 1 in a MIP solution). There exists a linear mapping A that

maps pi to a point that is close to p j for all (i, j)∈R′, i.e. 0≤ d±
i, j.x,d

±
i, j.y,d

±
i, j.z≤ ε+

M(1− xi, j)≤ 5ε . There might still be a systematic error up to the magnitude of 5ε .

Therefore, we now use a second LP that minimizes distances between coordinates

of matching pairs in R′. The LP relaxation also computes a transformation matrix A

that can serve as an initial configuration for this second LP. We use the same variable

names as for the MIP, i.e. d+
i, j, d−

i, j ∈ (R≥0)4, (i, j) ∈ R′, and ak,l ∈R, k ∈ [3], l ∈ [4].
To compute matrix A we solve

Min ∑
(i, j)∈R′

(d+
i, j.x+d+

i, j.y+d+
i, j.z+d−

i, j.x+d−
i, j.y+d−

i, j.z)

s.t. d+
i, j −d−

i, j = q j −Api and conditions (1), (2).

3 Results

We execute LPs with the GNU Linear Programming Kit library. The approach works

if a couple of significant corners can be detected. Then results depend on the error

bound ε and on the resolution of the density image that is used to detect corners.

Data shown in Figure 1 belong to a point cloud with 5,577,195 points. The cloud has

to be matched with 1,440 vertices of the city model. Figure 2 illustrates the outcome

for resolution 9 dots/m2 and ε = 0.6 m. Figure 3 shows distances between trans-

formed corners and model vertices of matching pairs in R′. Overall running time on

one i5 processor core is less than one second. Without relaxation, the running time

does not change significantly (ε replaced by 5ε for consistency). With increasing

resolution also accuracy increases. However, the higher the resolution is, the less

visible become walls, and the number of detected corners decreases.

Our approach works for scenes that cover multiple significant building corners.

This might not be the case if videos are taken from street level. But then one can

6 Steffen Goebbels, Regina Pohle-Fröhlich, and Philipp Kant

ε = 0.6 m ε = 0.3 m

9dots/m2,332corners 36dots/m2,146corners 9dots/m2,332corners 36dots/m2,146corners

|R|= 688, |R′|= 39 |R|= 602, |R′|= 15 |R|= 688, |R′|= 8 |R|= 602, |R′|= 8

0 2 4 6

LP

MIP

0 2 4 6

LP

MIP

0 2 4 6

LP

MIP

0 2 4 6

LP

MIP

Fig. 3 Distances between transformed corners and CityGML vertices of matching pairs in meters:

Boxplots show the results of LP relaxation of the MIP (denoted MIP) and subsequent LP optimiza-

tion (denoted LP) for density images with 9 and 36 dots/m2. Median 0.25 for parameter ε = 0.3 m

and resolution 36 dots/m2 is within metering precision.

detect (few) lines in the density picture and match them with corresponding lines of

the city model’s building footprints using a MIP, see [5].

References

1. Baird, H.S.: Model-Based Image Matching Using Location. ACM Distinguished Dissertation.

MIT Press, Cambridge, Mass. (1984)
2. Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Çöltekin, A.: Applications of 3D city models:

State of the art review. ISPRS Int. J. Geo-Inf. 4, 2842–2889 (2015)
3. Boulch, A., de La Gorce, M., Marlet, R.: Piecewise-planar 3D reconstruction with edge and

corner regularization. Computer Graphics Forum 33(5), 55–64 (2014)
4. Flöry, S., Hofer, M.: Surface fitting and registration of point clouds using approximations of

the unsigned distance function. Computer Aided Geometric Design 27(1), 60 – 77 (2010)
5. Goebbels, S., Pohle-Fröhlich, R.: Line-based registration of photogrammetric point clouds

with 3D city models by means of mixed integer linear programming. In: International Con-

ference on Computer Vision Theory and Applications (VISAPP 2018). Funchal (to appear)
6. Goebbels, S., Pohle-Fröhlich, R., Rethmann, J.: Planarization of CityGML models using a

linear program. In: Operations Research (OR 2016 Hamburg), pp. 591–597. Springer, Berlin

(2017)
7. Gröger, G., Kolbe, T.H., Nagel, C., Häfele, K.H.: OpenGIS City Geography Markup Language

(CityGML) Encoding Standard. Version 2.0.0. Open Geospatial Consortium (2012)
8. Maiseli, B., Gu, Y., Gao, H.: Recent developments and trends in point set registration methods.

Journal of Visual Communication and Image Representation 46, 95 – 106 (2017)
9. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Third International

Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)
10. Sakakubara, S., Kounoike, Y., Shinano, Y., Shimizu, I.: Automatic range image registration

using mixed integer linear programming. In: Y. Yagi, S.B. Kang, I.S. Kweon, H. Zha (eds.)

Computer Vision – ACCV 2007: 8th Asian Conference on Computer Vision, Tokyo, Japan,

November 18-22, 2007, Part II, pp. 424–434. Springer Berlin Heidelberg, Berlin (2007)
11. Wang, Y., Moreno-Centeno, E., Ding, Y.: Matching misaligned two-resolution metrology data.

IEEE Transactions on Automation Science and Engineering 14(1), 222–237 (2017)
12. Windheuser, T., Schlickewei, U., Schmidt, F.R., Cremers, D.: Large-scale integer linear pro-

gramming for orientation preserving 3D shape matching. Computer Graphics Forum 30(5),

1471–1480 (2011)

