A two-dimensional multi-criteria bin packing problem in the production of printed circuit boards

Jochen Rethmann and Steffen Goebbels

Niederrhein University of Applied Sciences - Institute for Pattern Recognition, Faculty of Electrical Engineering and Computer Science

OR 2024 Munich

Outline

- The problem (Precoplat Präzisions-Leiterplatten-Technik GmbH)
- Mixed Integer Linear Program (MILP) formulation
- Results

The original 2D bin packing problem

Classical Problem: n heterogeneous small rectangular items $j \in [n] := \{1, ..., n\}$ with width w_j and height h_j are given. Place them into the minimum number of bins with width W and height H. Items may be rotated by 90 degrees.

A variant of the 2D bin packing problem

We extend the classical problem:

• Minimise number of bins, maximise occupied area, minimise number of different bin patterns (layouts) to reduce changeover times, minimise costs

A variant of the 2D bin packing problem

We extend the classical problem:

- Minimise number of bins, maximise occupied area, minimise number of different bin patterns (layouts) to reduce changeover times, minimise costs
- Each item j has a demand of d_j copies.
- It is possible to increase the demand d_j of each item j by a given factor $f_j \geq 1$.

A variant of the 2D bin packing problem

We extend the classical problem:

- Minimise number of bins, maximise occupied area, minimise number of different bin patterns (layouts) to reduce changeover times, minimise costs
- Each item j has a demand of d_j copies.
- It is possible to increase the demand d_j of each item j by a given factor $f_j \geq 1$.
- Additionally, some optional items may be used to increase the occupied area.
- However, optional items are associated with costs $cost_i \geq 0$.

A variant of the 2D bin packing problem (2)

- Milling and carving can be combined. The distance between an item to be milled and all its neighbours must be at least $\delta = 6 \, \mathrm{mm}$.
- Guillotine cuts are not mandatory. However, if an edge to be carved or milled ends inside the board, a larger minimum distance of $\gamma = 8 \, \mathrm{mm}$ is needed.

Outline

- The problem
- Mixed Integer Linear Program (MILP) formulation
- Results

Multiple bins with the same pattern

• We create a maximum of p potentially different patterns and then duplicate them using bins (I, i). Each pattern $I \in [p]$ can have at most m identical copies, $i \in [m]$. Placement conditions have to be checked only for bins (I, 1).

- Each item *j* can have at most *d* copies within one single bin.
- Binary variable $bin_{l,i,j,c}$ is one iff copy $c \in [d]$ of item j exists in bin (l,i).

• Number of copies of item j in bin (I, i):

$$cnt_{l,i,j} = \sum_{c \in [d]} bin_{l,i,j,c}.$$

• Number of copies of item j in bin (I, i):

$$cnt_{l,i,j} = \sum_{c \in [d]} bin_{l,i,j,c}.$$

• $used_{I,i}$ is set to one iff bin (I,i) is non-empty, i.e.,

$$bin_{l,i,j,c} \leq used_{l,i}$$
 for all $j \in [n], c \in [d]$.

One objective is to minimise the number of used bins: $\sum_{l=1}^{p} \sum_{i=1}^{m} used_{l,i}$.

• Number of copies of item j in bin (I, i):

$$cnt_{l,i,j} = \sum_{c \in [d]} bin_{l,i,j,c}.$$

• $used_{l,i}$ is set to one iff bin (l,i) is non-empty, i.e.,

$$bin_{l,i,j,c} \leq used_{l,i}$$
 for all $j \in [n], c \in [d]$.

One objective is to minimise the number of used bins: $\sum_{l=1}^{p} \sum_{i=1}^{m} used_{l,i}$.

• If a bin (I, i) is used $(used_{I,i} = 1)$ then it must have the same item count than bin (I, 1): For all $I \in [p]$, $2 \le i \le m$, $j \in [n]$:

$$-d \cdot (1 - used_{l,i}) <= cnt_{l,1,j} - cnt_{l,i,j} \leq d \cdot (1 - used_{l,i}).$$

• Number of copies of item j in bin (I, i):

$$cnt_{l,i,j} = \sum_{c \in [d]} bin_{l,i,j,c}.$$

• $used_{l,i}$ is set to one iff bin (l,i) is non-empty, i.e.,

$$bin_{l,i,j,c} \leq used_{l,i}$$
 for all $j \in [n], c \in [d]$.

One objective is to minimise the number of used bins: $\sum_{l=1}^{p} \sum_{i=1}^{m} used_{l,i}$.

• If a bin (I, i) is used $(used_{I,i} = 1)$ then it must have the same item count than bin (I, 1): For all $I \in [p]$, $2 \le i \le m$, $j \in [n]$:

$$-d \cdot (1 - used_{l,i}) \le cnt_{l,1,j} - cnt_{l,i,j} \le d \cdot (1 - used_{l,i}).$$

• The binary variable $rot_{l,j,c}$ is one iff bin-specific copy c of item j is rotated by 90 degrees in bin (l,1).

Placement of items within the given range

- An item j may be marked as optional with $o_i = 1$.
- Only if selected, it must also be placed in the specified number of copies.
- ullet To select optional items, we introduce binary variables sel_j with

$$1 - o_j \leq sel_j$$
 for all $j \in [n]$.

• Then for all $j \in [n]$:

$$sel_j \cdot d_j \leq \sum_{l \in [p]} \sum_{i \in [m]} cnt_{l,i,j} \leq sel_j \cdot f_j \cdot d_j.$$

Objective functions

The objective is to

- use a minimum number of bins,
- use a minimum number of different patterns,
- obtain a largest covered area (i.e. minimum waste),
- minimise the costs of optional items.

Instead of dealing with a Pareto front, we simply use linear scalarisation and minimise

$$\sum_{l=1}^{p} \sum_{i=1}^{m} c_0(i) \cdot used_{l,i} - c_3 \sum_{j \in [n]} \sum_{c \in [d]} \sum_{l \in [p]} \sum_{i \in [m]} bin_{l,i,j,c} \cdot w_j \cdot h_j + c_4 \sum_{j=1}^{n} sel_j \cdot cost_j,$$

where $c_0(1) := c_1$, and $c_0(I) := c_2$ for I > 1, weight pattern bins (I = 1) differently to bins with pattern copies (I > 1).

Alternative objective functions

- Additionally minimise the number of different and/or the sum of all *x* and *y*-coordinates.
- Avoid maximising the area covered. Require a minimum coverage of $\kappa\%$:

$$\sum_{j \in [n]} \sum_{c \in [d]} bin_{l,i,j,c} \cdot w_j \cdot h_j \geq used_{l,i} \cdot \frac{\kappa}{100} \cdot W \cdot H \text{ for all } l \in [p], \ i \in [m].$$

Placement conditions

- The items in each bin must not overlap: We use constraints from
 Pisinger, D., Sigurd, M.: The two-dimensional bin packing problem with variable
 bin sizes and costs. Discrete Optimization 2(2), 154–167 (2005).
- We integrated rotation infos $rot_{l,j,c}$.
- We added the additional distance constraint required in case of milling: Each item j has to be either milled, then $milled_j = 1$, or carved ($milled_j = 0$). Let

$$dist_{j,j'} := milled_j \lor milled_{j'} \in \{0,1\}.$$

Item j and j' must have a distance of $dist_{j,j'} \cdot \delta$.

Distance constraint for non-guillotine cuts

Example: Carving with the non-guillotine cut constraint

Distance constraint for non-guillotine cuts (2)

Outline

- The problem
- Mixed Integer Linear Program (MILP) formulation
- Results

Setup of experiments

- IBM CPLEX 22.1.1 optimiser¹ with a time limit of 600 s
- Test system: Ubuntu 22.04.4 LTS, AMD Ryzen 5 5500U CPU, 32 GB RAM.
- Importance of the four individual objectives was ranked in descending order: $c_1 = 1 + \frac{1}{\rho}$, $c_2 = 1$, $c_3 = \frac{1}{\rho^2 W H m}$, $c_4 = \frac{c_3}{10\rho}$.
- We chose $milled_j = cost_j = o_j = 0, j \in [n]$

¹CPLEX version 12.8 found different solutions, sometimes faster, sometimes slower.

Experiments

instance $W \times H$ $r_1 = 820 \times 620$

We investigated the influence of maximising the area covered vs. coverage of κ % and of the non-guillotine cut constraint (values in brackets: no non-guillotine cut constraint)².

- Measurements labelled "single": one pattern (p=1) in one bin (m=1, d=10)
- "double": maximum of two patterns (p=2) with two bins each (m=2, d=20), prescribed multiplicities were doubled.

r 830 × 630 | r 840 × 640

ilistance, vv \ \ 11	71, 02	0 × 020		12, 030	× 030	73, 040 × 040			74, 030 × 030					
item number $j =$	1	2	1	2	3	1	2	3	4	1	2	3	4	5
width $w_j/100$	4	3	3.5	2.5	2	2	2	2	2	2	2	1	8.0	1
height $h_i/100$	4	2	3	2	1.5	3	2	1.5	1	3	2	2	2	1
min. multiplicity d_j	2	3	2	3	4	2	3	4	6	2	3	4	5	8
max. mult. $f_j \cdot d_j$	3	4	3	4	5	3	4	5	7	3	4	5	6	9
instance variant	single	double	si	ngle	double	S	ingle	do	ouble		sing	le	do	ouble
max. area	42s (2s)	600 s (27 s)	600 s	(600s)	- (600 s)	-	(600 s)	- (600 s)		- (-	-)	- (600 s)
$\kappa\% = 90\%$	$1 \mathrm{s} (1 \mathrm{s})$	600 s (7 s)	100	s (1s)	- (-)	-	- (-)	-	(-)		- (-	-)	-	(-)
$\kappa\% = 80\%$	$1 \mathrm{s} (1 \mathrm{s})$	600 s (11 s)	121	s (1s)	- (247 s)	553	3s (2s)	-	(-)	56	$55\mathrm{s}$	(5 s)	-	(-)
$\kappa\% = 70\%$	$1 \mathrm{s} (1 \mathrm{s})$	600 s (29 s)	180	s (1s)	-(600 s)	405	5s (2s)	- (600 s)		- (3	s)	- (600 s)
$\kappa\% = 60\%$	1s (1s)	600 s (11 s)	124	s (1s)	- (33 s)	-	(2s)	- (600 s)	-	- (2:	ls)	- (600 s)
2														

²The time to find an optimal solution (only feasible solution if 600 s) is shown.

Bold numbers indicate sub-optimal solutions with too many occupied bins.

Rethmann. Goebbels: 2D Bin Packing with Constraints. -16-

Tests with one pattern and many bins

We chose p=1, m=10, d=10 and increased item multiplicities to $d_j=10\cdot (j+1)$, $j\in [4]$, $d_5=80$, $f_j\cdot d_j=d_j+1$, $j\in [5]$ (if an item j belonged to the instance).

instance	r_1	r_2	<i>r</i> ₃	r_4
max. area	600 s (10 s)	535 s (8 s)	- (5 s)	- (8 s)
$\kappa\%=90\%$	215 s (6 s)	- (146 s)	- (2s, no solution)	(2s, no solution)
$\kappa\%=80\%$	498s (5s)	140 s (48 s)	463 s (3 s)	- (23 s)
$\kappa\%=70\%$	317s (2s)	- (9s)	- (3s)	-(24s)
$\kappa\%=60\%$	600 s (11 s)	600 s (35 s)	600 s (2 s)	-(5s)

Conclusions

The runtimes are practicable if problems are limited to one pattern and the non-guillotine cut constraint is omitted.

- To deal with the non-guillotine cut constraint:
 - One can generally specify a uniform distance of 8 mm (or less) between items and remove the constraint for a start. With a solution obtained, the problem with the original distant constraint can be warm-started.
- To deal with multiple patterns:
 - Separate the assignment of items to patterns from the calculation of the pattern layouts, i. e. use two consecutive optimisation problems.

Possible extensions: Additional material balancing conditions may be added due to the requirements of the manufacturing process.

