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Abstract 3D City Models often are generated from sparse airborne laser scanning

point clouds. Data-driven algorithms fit plane segments with the points and combine

segments to watertight roof models. But low resolution laser scanning data lead to

noisy boundary structures that have to be straightened. We propose a mixed integer

linear program that rectifies directions of boundary edges according to the cadastral

footprint and favors orthogonality. We apply this procedure to all connected com-

ponents of the planar graph that represents polygonal boundaries of roof facets. The

proposed method is suitable for the generation of large scale city models.

1 Introduction

Most algorithms that generate 3D building models either follow a data-driven

or a model-driven methodology or combine both methodologies, see [10]. In a

model-driven approach, parameterized standard roofs from a catalogue are fitted to

point clouds obtained by airborne laser scanning or photogrammetry. Data-driven

algorithms estimate plane segments and combine them to watertight roofs (cf.

[5, 6, 7, 9]). However, publicly available point clouds often are sparse and con-

tain less than ten points per square meter. This makes it difficult to estimate roof

polygons exactly. In our data-driven framework, we use a Ramer Douglas Peucker

algorithm to obtain straight edges, see [2, 4]. We also estimate rectangular structures

and snap vertices to intersection lines between estimated planes (ridge lines). Never-

theless, the models still need improvement, especially along step edges, see Figure

2. Such model beautification also is useful in connection with reverse engineering

of scanned 3D objects to CAD models, see [1] and the literature cited there.

The idea of this paper is to cautiously change the positions of vertices to obtain

a maximum number of edges that are orthogonal to edges of the cadastral footprint.
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A changed vertex position has impact on at least two edges and the angles between

them and their neighbor edges. Thus a global optimization problem arises. A similar

problem is addressed in [11] and solved by minimizing a non-linear energy func-

tion through graph reduction techniques. However, amongst others, the condition

of orthogonality is linear. Linear programming has already been successfully used

to planarize roof polygons of city models, see [3]. For model beautification, binary

variables are required to select the vertices that have to be changed. Thus, we in-

troduce a mixed integer linear program (MIP) in the next section. The last section

summarizes results.

2 A Linear Program for Beautification

Let D be a set of normalized direction vectors. Each vector of D is parallel or orthog-

onal to a significant edge of the building’s cadastral footprint. We regard an edge as

significant if it is longer than 2 m. We only consider the longest cadastral edges

and limit D to eight elements. Each vector d ∈ D is represented as a pair (d.x,d.y),
√

(d.x)2 +(d.y)2 = 1.

All building edges are projected to the x-y-ground plane. To reduce the number

of edges and computational complexity, we first collapse sequences of edges to

one edge if they have nearly the same orientation, i.e. angles between edges of the

sequence are near π , and if the surrogate edge does not differ more than a threshold

value from the replaced edges. The outcome is a planar graph. We determine all

connected components of this graph because coordinate changes of a vertex do only

have impact on the connected component of the vertex. For example, dormers in the

roof’s interior might lead to separate connected components.

Let E be the set of all non-trivial 2D edges e=(e1,e2)= ((e1.x,e1.y),(e2.x,e2.y))
of a connected component that fulfill following two conditions (see Figure 1): Each

edge has to possess at least one vertex e1 or e2 that does not coincide with a ver-

tex of the outer or inner cadastral footprint polygons. Also, an edge must not be

completely covered by a footprint edge. We split E = E ′∪E ′′ into two disjoint sets.

Edges in E ′ are allowed to change their orientation, whereas edges in E ′′ have to

keep their original direction. We put all edges into E ′′ that are originally orthogonal

to a vector of D. By keeping their orientation, we will reduce the number of binary

variables.

V denotes the set of vertices belonging to edges in E, V ′ ⊂V is the set of vertices

for which we allow position changes. Vertices in V ′ must not be used in footprint

polygons and they must not represent intersection points of estimated roof’s ridge

lines. There might be vertices in V ′ that are not within the interior of the footprint

but are positioned on a footprint edge. Let V ′′ ⊂V ′ be the set of these vertices. Our

MIP changes their positions as well as positions of interior vertices. To this end we

need float variables x+v , x−v , and y+v , y−v for each v ∈ V that represent non-negative

distances. For v ∈V \V ′ their values are fixed set to zero.
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We introduce binary variables xe,d which indicate that an edge e ∈ E ′ becomes

orthogonal to a direction vector d ∈ D:

xe,d =

{

1 : e is transformed to become orthogonal to d

0 : else

}

for e ∈ E ′
,d ∈ D.

With a threshold value ε that limits coordinate changes, the MIP optimizes an

D

E’

V V’ V’’

E E’’

Cadastral footprint

Fig. 1 Left: Two examples with a square as building footprint. The left sketches show original

layouts, the right ones show the outcomes of optimization. The upper example has an edge with two

vertices that are placed on footprint edges. The vertices have to stay on these edges. The vertices of

the interior polygon in the lower example can be moved without such restrictions. Right: A roof’s

graph with two connected components is shown to illustrate the sets of edges E = E ′∪E ′′, the sets

of vertices V ′′ ⊂V ′ ⊂V , and the set of footprint directions D.

objective function with the primary goal to find a maximum number of orthogonal

edges:

maximize

(

∑
e∈E ′

∑
d∈D

xe,d

)

−
1

8 · |V ′| · ε ∑
v∈V ′

(

x+v + x−v + y+v + y−v
)

.

The secondary aim is to minimize coordinate changes. The factor 1
8·|V ′|·ε , in which

|V ′| is the number of elements of V ′, ensures that all possible coordinate changes

contribute significantly less than one binary variable. We maximize the objective

function subject to a list of restrictions:

Modified edges e ∈ E ′ have to be orthogonal to direction d ∈ D if xe,d = 1:

−M · (1− xe,d) ≤ (e2.x+ x+e2
− x−e2

− e1.x− x+e1
+ x−e1

) ·d.x

+(e2.y+ y+e2
− y−e2

− e1.y− y+e1
+ y−e1

) ·d.y ≤ M · (1− xe,d),

here M is chosen as a positive number that is larger than the longest occurring edge.

Thus, we implement the two conditions
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(x+e2
− x−e2

− x+e1
+ x−e1

) ·d.x+(y+e2
− y−e2

− y+e1
+ y−e1

) ·d.y+M · xe,d

≤ M+(e1.x− e2.x) ·d.x+(e1.y− e2.y) ·d.y,

(−x+e2
+ x−e2

+ x+e1
− x−e1

) ·d.x+(−y+e2
+ y−e2

+ y+e1
− y−e1

) ·d.y+M · xe,d

≤ M+(−e1.x+ e2.x) ·d.x+(−e1.y+ e2.y) ·d.y.

We do not change vertices on the cadastral footprint and intersection points of

ridge lines. This gives the next set of restrictions:

x+v = x−v = y+v = y−v = 0 for all v ∈V \V ′
.

Other vertices can be moved but only within the threshold distance ε > 0:

0 ≤ x+v ,x
−
v ,y

+
v ,y

−
v < ε for all v ∈V ′

.

This condition might be changed to an adaptive one based on edge length.

Vertices in V ′′ are only allowed to change their positions so that they stay on the

one footprint edge that they are positioned on, see upper example on the left side

of Figure 1. Thus, for all v ∈ V ′′ we introduce a parameter variable 0 ≤ rv ≤ 1 and

require

x+v − x−v − (bv.x−av.x) · rv = av.x− v.x

y+v − y−v − (bv.y−av.y) · rv = av.y− v.y,

where av and bv denote the 2D vertices of the corresponding footprint edge.

To reduce the degrees of freedom, we set xe,d = 0 for all e ∈ E ′, d ∈ D with

|(e2.x−e1.x) ·d.x+(e2.y−e1.y) ·d.y|
√

(e2.x−e1.x)2+(e2.y−e1.y)2
>

∣

∣

∣
cos
(π

2
+α

)∣

∣

∣

such that for each model edge we only consider roughly orthogonal cadastral foot-

print directions. Maximum deviation from ±π
2

is determined by the threshold angle

α . Another set of restrictions keep the orientation of edges that are orthogonal to a

footprint direction d ∈ D from the beginning: For all e ∈ E ′′ let

(x+e2
− x−e2

− x+e1
+ x−e1

) · (e1.y− e2.y)+(y+e2
− y−e2

− y+e1
+ y−e1

) · (e2.x− e1.x) = 0.

Finally, feasible solutions fulfil ∑d∈D xe,d ≤ 1 for all e ∈ E ′.

We follow an optimistic approach and, for performance reasons, do not check

if edges cross other edges due to position changes. In that case, self intersections

of polygons or intersections between different connected components occur. Our

existing framework for building model generation resolves such situations by cut-

ting polygons into pieces. If a problem cannot be resolved then the threshold value

ε will be reduced and the model will be re-computed. The algorithm starts with

a given threshold value ε and then iteratively divides the threshold value by two.

However, we only update vertices with their optimized positions if they do not leave

the area of the cadastral footprint.
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3 Results

Our implementation is based on the GNU Linear Programming Kit library GLPK

[8]. We apply the MIP to city model generation of the square kilometer with 1829

buildings of Krefeld that covers the building of our institute. This tile is visualized in

Figure 2. Table 1 summarizes resulting sizes of non-trivial problem instances with

at least one changeable edge, i.e. one binary variable. The improved city model is

visualized in Figure 2.

Table 1 Results for a city model of a square kilometer (UTM intervals [32330000,32331000]×
[5687000,5688000]: For parameter combination ε = 1 m, α = π

6
, there exist 1826 non-trivial

problem instances for connected components, 61 reach the time limit of two seconds (not included

in running time data, a larger time limit does not increase the number of successful instances

significantly). There are 1876 instances for parameters ε = 2 m, α = π
4

, of which 89 exceed the

time limit. Running times are measured on one kernel of a Macbook Pro (2013) with 2.4 GHz i5

processor.

minimum maximum arithmetic mean median quartiles

ε = 1 m, α = π
6

variables 9 2709 66.69 35 20, 45

binary variables 1 1210 10.34 4 2, 8

conditions 2 3004 43.61 20 11, 39

changed vertices 0 233 4.01 3 2, 5

running time [ms] 0.09 1697.96 17.45 0.46 0.29, 1.28

ε = 2 m, α = π
4

variables 9 2951 68.05 36 20, 45

binary variables 1 1500 12.51 4 2, 9

conditions 2 3679 48.88 22 11, 42

changed vertices 0 261 4.44 3 2, 5

running time [ms] 0.12 1765.27 19.08 0.52 0.31, 1.51

An artifact of optimization with an l1-norm instead of using least squares is that

larger individual coordinate changes might occur. For example, in Figure 1 the ver-

tical line in the upper left sketch is not optimized to be in the middle of the square.
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