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Abstract. Many municipalities provide textured 3D city models for
planning and simulation purposes. Usually, the textures are automati-
cally taken from oblique aerial images. In these images, walls may be
occluded by building parts, vegetation and other objects such as cars,
traffic signs, etc. To obtain high quality models, these objects have to
be segmented and then removed from facade textures. In this study, we
investigate the ability of different non-specialized inpainting algorithms
to continue facade patterns in occluded facade areas. To this end, non-
occluded facade textures of a 3D city model are equipped with various
masks simulating occlusions. Then, the performance of the algorithms is
evaluated by comparing their results with the original images. In partic-
ular, very useful results are obtained with the neural network “DeepFill
v2” trained with transfer learning on freely available facade datasets and
the “Shift-Map” algorithm.
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1 Introduction

During the the last decades, various image inpainting techniques have been de-
veloped that fill absent regions in images. In [15], an extensive survey is given.
Inpainting is an ill-assorted problem because there is no hard criterion how miss-
ing information has to look like. However, generated edges and texture patterns
should somehow fit with the given data. Such reconstruction of missing infor-
mation is often required for optical remote sensing data, see the overview paper
[19]. Our goal is to restore areas on facade images that are occluded, e.g., by veg-
etation or other buildings. These facade images are used as textures in 3D city
models, cf. Figure 1, and they are typically obtained from oblique aerial images.
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Occluded facade regions can be segmented by detecting objects like trees and
vehicles as well as by drawing the 3D model from the camera perspective. The
3D model then helps to identify regions hidden by other buildings, cf. [7]. There
exist specialized inpainting algorithms for building facades, see Section 2. How-
ever, the contribution of this paper is to investigate whether readily available
general methods can be used instead of specialized algorithms. The occluded
regions are usually so large that realistic results are difficult to obtain by merely
considering only local data from the region boundary. Nevertheless, we consider
the boundary-based Navier-Stokes and the Telea diffusion algorithms [1, 21] (see
Section 3.1) to compare the results with global inpainting, i.e., with texture syn-
thesis approaches. Facade images often show a repetitive pattern due to a regu-
lar arrangement of windows. Such patterns can be described by grammars and
they are the reason why the continuation of global texture properties can work
sufficiently for facades. We compare the results of both explicitly implemented
algorithms and deep neural networks, see Section 3.3 for the two convolution
based deep neural networks DeepFill v2 [27] and GMCNN [23] as well as Section
3.2 for other algorithms.

It turns out that global texture synthesis works better than local inpainting
algorithms. Due to technical problems, Frequency Selective Reconstruction [5,
18] operates only very well on downscaled images. Without adjusting the scale,
the best results are gained with transfer learning applied to DeepFill v2 and the
example-based Shift-Map inpainting algorithm, see Section 5.

2 Related Work

Whereas we discuss the application of general purpose algorithms, various papers
have treated the specialization of inpainting techniques to facade images. A
selection of these algorithms is briefly described in this section.

Facades of large buildings often have a regular pattern of windows that can be
expressed with an Irregular Rectangular Lattice (IRL). This is a grid of lines that
extend the boundaries of semantically labeled facade objects like windows and
doors. Based on an IRL, a recurrent neural network was used in [9] to propose
positions and sizes of occluded windows. In the context of 3D city models, the
algorithm in [3] synthesizes photorealistic facade images using example-based
inpainting. To this end, textured tiles are defined by the rectangles of the IRL
obtained from a random forest. The IRL is then extrapolated to occluded regions.
A genetic algorithm is applied to optimize a labeling of the rectangular tiles.
The algorithm decides which rectangles show the same textures. These textures
are taken from non-occluded rectangle instances. Such tile based synthesis was
also discussed and applied to facades in [25]. In [13], information about detected
facade objects was combined with example-based inpainting, and in [28], instance
segmentation of unwanted objects was combined with a generative adversarial
network (GAN) to fill regions occupied by the objects.

The EdgeConnect GAN [16] was slightly improved for facade images in [14]
by applying semantic segmentation. It was extended to a three-stage model that
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uses three GANs to reconstruct an edge image, a label image, and a texture
image.

Another approach to reconstruct missing facade regions is to apply split
grammars, see [24]. These grammars are a collection of rules that describe the
placement of facade objects. With their help, missing facade objects can be
added and even complete facades can be generated procedurally. Often, facades
show symmetry. This is utilized in the algorithm [2].

Facade regions can be also reconstructed with the inpainting algorithm in
[10]. After detecting line segments of edges, the segments are classified according
to vanishing points of corresponding lines. Then image regions covered by line
segments that belong to two classes are likely to describe a plane in 3D. Textures
are continued by considering these planes.

Often, facades are visible in multiple oblique aerial images belonging to dif-
ferent camera positions and directions. Algorithms like the one in [12] address
facade texture generation based on images taken from a moving camera.

3 Algorithms

For this study, we have selected algorithms that are freely available via the
computer vision library OpenCV'! or via open code repositories.

3.1 Local, Diffusion-based Inpainting Algorithms

OpenCV offers traditional inpainting algorithms that locally continue patterns
from the boundary of a region to its interior. They require a source image and a
separate 8-bit, one channel mask to define occluded areas. These algorithms are
also classified as structure-based.

Navier-Stokes (INS) algorithm The Navier-Stokes equations are partial dif-
ferential equations that model the motion of viscous fluids. Applied to image
inpainting, the equations can be used to continue isophotes (curves connecting
points of equal gray value) while matching gradient vectors at the boundary of
inpainted regions, see [1]. Due to the diffusion process, some blur is visible if the
algorithm is applied to fill a larger region.

Inpainting based on the Fast Marching Method (Telea algorithm) In
[21], Alexandru Telea presented an inpainting algorithm that is easier to im-
plement than the NS algorithm. It iteratively propagates boundary information
to the interior of occluded regions by computing weighted means of pixel val-
ues that are estimated with a linear Taylor approximation. Thus, as with many
algorithms, the region is synthesized from the outside inward.

"https://opencv.org (all websites accessed on January 12, 2022)
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3.2 Global Inpainting Algorithms Not Relying on Deep Learning

With the Shift-Map and the Frequency Selective Reconstruction methods, we
take into account two algorithms that are provided by the “xphoto” package?
of OpenCV. These algorithms do not only consider the boundary of occluded
regions but the whole image. They are also called texture-based.

Shift-Map algorithm A shift-map consists of offsets that describe how pix-
els are moved (shifted, transformed) from a source to a target image region.
Shift maps can be optimized with respect to certain smoothness and consistency
requirements by solving a graph labeling problem, see [17]. The cited paper
also introduced shift-map-based inpainting: By choosing an occluded area as a
source, inpainting can be viewed as finding an optimized shift-map. The xphoto-
implementation is based on [8] where a sparsely distributed statistics of patch
offsets was utilized to implement example-based inpainting. This algorithm can
be seen as a generalized variant of example-based synthesis of facade patterns
proposed with algorithms mentioned in Section 2.

Frequency Selective Reconstruction (FSR) In contrast to local inpainting
techniques based on boundary information, Fourier analysis is a means for global
approximation due to the global support of basis functions. When Fourier co-
efficients are determined based on known image areas, the Fourier partial sums
also provide data for unknown areas. This is the idea behind Frequency Se-
lective Inpainting, see [11], which is based on the discrete Fourier transform.
Discrete Fourier coefficients are estimated from the given, incomplete sample
data. The coefficients can be seen as factors in a linear combination of Fourier
basis functions to represent the given discrete data. Since the given informa-
tion is incomplete, the corresponding system of linear equations is underdeter-
mined, and there are infinitely many solutions for the coeflicients. Therefore,
the method applies a heuristics called Matching Pursuit. It iteratively selects
a basis function that best approximates the given data. In each iteration, this
best approximation is subtracted from the given data (residual vector). Thus,
rather than calculating all the coefficients at once, iterations are performed by
selecting the most important frequencies. Once the discrete coefficients are esti-
mated, the data can be reconstructed by the inverse discrete Fourier transform.
The xphoto-implementation follows [5] and [18].

3.3 Deep Learning-based Global Inpainting Algorithms

DeepFill v2 The ”Free-Form Image Inpainting with Gated Convolution” net-
work, “DeepFill v2” for short, is based on gated convolution, see [26,27]. In
contrast to the application of partial convolution, gated convolution allows the
network to learn how to apply convolution kernels to incomplete data. While

*nttps://docs.opencv.org/5.x/de/daa/group__xphoto.html
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Fig. 1. Textured city model of Krefeld

the features are based on general convolution, the algorithm uses an adaptive
dynamic feature selection mechanism (known as gating mechanism) for each
channel at each spatial position. When applied, the network consists of two
separate encoder-decoder sub-networks, the coarse network and the refinement
network which implements contextual attention. An input mask defines the re-
gions to be filled. In these regions, the output of the coarse network looks like
a blurred image. The contextual attention stage adds the missing details such
as contours. In the training phase, a third sub-network is attached to compute
an adversarial loss that is linearly combined with a pixel-wise [; reconstruction
loss.

GMCNN The Generative Multi-column Convolutional Neural Network (GM-
CNN) uses local as well as global information to predict pixels in regions that are
specified by a mask, see [23]. In total, the network consists of three sub-networks.
The inpainting is done with the first sub-network, the generator. The second sub-
network implements local and global discriminators for adversarial training and
the third sub-network is a pre-trained VGG network [20] that provides features
to calculate the implicit diversified Markov random fields (ID-MRF) loss intro-
duced in [23]. With respect to the feature space, this loss minimizes the distance
between the generator output and a nearest neighbor in the set of ground truth
images. Only the first sub-network is used for testing. This generator consists
of three parallel encoder-decoders, which help to determine features on multiple
scales, and a shared decoder module to reconstruct the image.

4 Ground Truth, Training Data, and Network Training

Our aim is to improve facade textures obtained from oblique aerial images. Thus,
we generated a realistic set of test images from a textured 3D city model of the
area around our institute. We previously computed this model with the method
described in [6] based on airborne laser scanning point clouds and cadastral
footprints (available from the state cadastral office of the German state North
Rhine-Westphalia®) and textured it with oblique aerial images provided by the

3https://www.bezreg-koeln.nrw.de/brk_internet/geobasis/hoehenmodelle/
3d-messdaten/index.html



6 Fritzsche et al.

Ground
Truth

i":; | f

=
2

Fig. 2. Results of the DeepFill v2 scenario (S2) with regard to different masks

city of Krefeld, see Figure 1. The obtained facade images had a resolution of
about 15 x 15 pixels per square meter and were free of perspective distortions.
For this study, we considered only rectangular images that were completely cov-
ered with facades and did not show a background like the sky. To define a ground
truth, we manually selected 120 images that were free of occlusions. This proved
to be no easy task since most facade textures showed occlusions (mostly vegeta-
tion) of different sizes. We increased the number of images to 206 by mirroring
and periodic repetition. Together with automatically generated occlusion masks,
we tested all algorithms on these images. These masks were assembled from filled
triangles, rectangles, circles and higher level shapes like trees, see Figure 2. Ad-
ditionally, these objects were scaled, mirrored and rotated slightly. The shape
templates were taken from a dataset that has been published on the internet?,
cf. Figure 2.

‘https://www.etsy.com/de/1listing/726267122/baum-silhouette-svg-bundle
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Our dataset is too small to train the two neural networks. Therefore, we
worked with pre-trained models of DeepFill v2 and GMCNN. In both cases,
the pre-training was based on images of the “places2”® [29] dataset that had a
resolution of 256 x 256 pixels. In this model as well as in Figures 2 and 4, all pixels
with the color white (RGB (255, 255, 255)) define a mask. Masks can represent
more than one freely shaped object. We also worked with GMCNN pre-trained
on “Paris streetview” data [4] but observed artifacts along the boundaries of
occluded regions so that we went on only with the “places2” model. Since only
part of the images in “places2” show facades, we applied transfer learning with
images from the “Ecole Centrale Paris Facades Database”%, “FaSyn13”7 [3], and
“CMP”8 [22] datasets. These images were scaled to have the same number of
512 rows. If the number of columns exceeded 512, an image was cut into several
frames. If a width was less than 512 columns, the image was expanded by means
of mirroring. We also tried transfer-learning with images having 256 columns
and rows, but, at least with DeepFill v2, transfer-learning with images having a
resolution of 512 x 512 pixels led to much better results.

The training dataset contained 1,600 images divided into 1,440 training
images and 160 images for validation. Whereas the three source datasets are
widely used to compare the performance of facade related algorithms (e.g., for
instance segmentation), their images do not origin from oblique aerial imaging
such that, e.g., their resolution is higher and background like the sky is visible.

To train DeepFill v2, we equipped the training and validation images with the
automatically generated occlusion masks. GMCNN allows for automatic training
with randomly chosen rectangles as occluded areas. For simplicity, we did not
change the code but used this training option.

Both neural networks ran on an NVIDIA P6000 GPU. DeepFill v2 was
trained with a batch size of eleven due to hardware limitations. As proposed
in [27], the adversarial loss and the [; reconstruction loss were equally weighted
in one test scenario, denoted with (S1). For this scenario, 74,000 training steps
were executed in 18.5 epochs in 90 hours. Since we compare inpainted images
with ground truth images in an ls norm that is equivalent to the /; norm in a
finite dimensional space, we did a second test in which we chose a higher weight
factor for the [y loss by multiplying this loss with 1.1 whereas the adversarial
loss was only weighted with 0.9. This scenario is denoted with (S2). To train the
scenario, 134,000 training steps were executed in 33.5 epochs in 160 hours.

GMCNN was trained with a batch size of 32 and 60,000 training steps were
executed in 60 epochs in 120 hours.

Shttp://places2.csail.mit.edu/download.html
Shttp://vision.mas.ecp.fr/Personnel/teboul/data.php
"http://people.ee.ethz.ch/~daid/FacadeSyn/
Shttps://cmp.felk.cvut.cz/~tylecrl/facade/
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Fig. 3. Distribution of distances between ground truth and inpainted images of the
entire test dataset; DeepFill v2 (S1) relates to equally weighted loss components and
DeepFill v2 (S2) shows the result for a higher weighted [; loss

5 Results

Figure 4 shows the inpainting results for several facade images and occlusion
masks. The Navier-Stokes and Telea algorithms were applied with a circular
neighborhood having a radius of 128 pixels. Unfortunately, the openCV xphoto
beta version of the FSR algorithm had memory allocation problems and failed
to compute results for some images. In contrast to the other algorithms, we
therefore tested FSR with reduced image sizes. First, we trained both DeepFill
v2 scenarios (S1) and (S2) for 90 hours. Since the results of (S2) were visually
better than those of (S1), we extended (S2) training to 160 hours as described
before.

We compared the output images with the corresponding ground truth im-
ages by simply applying an ly-norm, for other metrics cf. [16]. Let G, A €
{0,1,...,255}m*"X3 he a ground truth image G' and an inpainted image A
with m rows, n columns and three channels. Let M be the set of coordinates of
all masked pixels with |M| elements. Then we measured the distance between A
and G via two distance metrics

. S S Yoy (Ai ik — Gija)?
dlStau(A, G) = m-n-3. 2552 s (1)

distmask (A4, G) Dig)eM S (Aijk — Gign)? )
mask ‘M| 3. 2552 .
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Table 1. Distance between ground truth images and inpainted images, see equation
(1); the image numbers refer to Figure 4. Bold and underlined numbers indicate best
and second best results

Image Navier- Telea Shift- FSR DeepFill |DeepFill [GMCNN
Stokes Map v2 (S1) v2 (S2)

1 0.026 0.05 0.024 0.007 0.013 0.012 0.255
2 0.022 0.023 0.033 0.019 0.02 0.022 0.257
3 0.043 0.045 0.077 0.037 0.032 0.028 0.096
4 0.027 0.03 0.028 0.018 0.016 0.014 0.168
5 0.071 0.066 0.057 0.05 0.073 0.061 0.194
6 0.097 0.088 0.134 0.121 0.084 0.079 0.211
7 0.038 0.044 0.051 0.025 0.027 0.026 0.15
8 0.035 0.036 0.034 0.025 0.031 0.03 0.163
9 0.094 0.088 0.077 0.097 0.089 0.086 0.26
10 0.081 0.079 0.083 0.073 0.077 0.073 0.198
11 0.093 0.087 0.108 0.075 0.099 0.08 0.259
12 0.047 0.044 0.025 0.05 0.034 0.031 0.127
13 0.005 0.009 0.005 0.003 0.006 0.006 0.262

These distances are normed to be in the interval [0, 1]. The box plots in Figure
3 show how the distances are distributed for each algorithm. A high distance
value might indicate a bad inpainting result but a pixel-wise comparison might
also lead to significant distances although the images appear similar. Instead of
using more sophisticated metrics to measure similarity, the quantitative evalu-
ation can be accompanied by a visual qualitative inspection. For example, the
Shift-Map algorithm copies rectangular structures that appear consistent even if
they do not fit. But a blurred region attracts attention even if it is closer to the
ground truth. For the images in Figure 4, distances dist,); are listed in Table 1
and distances distyaskx are shown in Table 2. While dist,asx only measures how
well mask regions can be reconstructed, dist,) also takes into account changes
outside the mask region, e.g., along its border. The data show that the algo-
rithms focus the changes to the mask regions. Although the distance measures
are normalized with respect to the image size, a comparison of the FSR values
calculated on downscaled images with those of the other algorithms is somewhat
limited. In GMCNN results, inpainted regions tend to show a slightly different
color distribution. This leads to large distance values. We did not investigate if
better results can be obtained with a different choice of hyperparameters and
training data.

Figure 2 illustrates the influence of different mask types. If the hidden regions
were not described by completely filled contours but were interrupted by many
non-hidden points, most algorithms worked better.

6 Conclusions

DeepFill v2 delivered excellent results, but also the Shift-Map algorithm per-
formed well. This is expected to be true for the FSR algorithm as well, once
a stable implementation is available. As shown in [14], the EdgeConnect GAN
[16] also is suitable for facade inpainting. The algorithms can be used without
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Table 2. Mask-specific distance between ground truth images and inpainted images
corresponding to Table 1, see equation (2)

Image Navier- Telea Shift- FSR DeepFill [DeepFill |GMCNN
Stokes Map v2 (S1) v2 (S2)
1 0.06 0.117 0.051 0.014 0.029 0.027 0.589
2 0.059 0.061 0.086 0.047 0.054 0.059 0.696
3 0.126 0.133 0.215 0.097 0.094 0.082 0.283
4 0.09 0.107 0.089 0.055 0.053 0.049 0.574
5 0.168 0.157 0.13 0.108 0.174 0.146 0.463
6 0.194 0.175 0.263 0.228 0.168 0.157 0.42
7 0.123 0.143 0.155 0.073 0.09 0.086 0.492
8 0.115 0.119 0.107 0.073 0.102 0.101 0.542
9 0.18 0.17 0.145 0.178 0.17 0.166 0.5
10 0.219 0.213 0.222 0.19 0.211 0.198 0.537
11 0.175 0.164 0.2 0.136 0.185 0.149 0.485
12 0.136 0.128 0.069 0.13 0.098 0.089 0.365
13 0.016 0.026 0.013 0.006 0.017 0.018 0.795

problem specific adjustments. We tested with low resolution facade textures of a
real city model but trained with datasets of higher resolution images. It may be
possible to enhance the neural network output further by adding low-resolution
images to the training dataset. To achieve better results, the datasets could be
additionally improved by adding noise and changing the brightness of the images.

There seems to be no longer a need for highly specialized facade inpainting
algorithms as referenced in Section 2, so a direct comparison would be interesting.
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Fig. 4. Comparison of inpainting algorithms; DeepFill v2 was trained with equal
weighted loss functions (S1) and with [; loss weighted higher than GAN loss (S2)



