Optimal Student Sectioning at Niederrhein University of Applied Sciences

Steffen Goebbels and Timo Pfeiffer

Niederrhein University of Applied Sciences - Institute for Pattern Recognition, Faculty of Electrical Engineering and Computer Science

OR 2019

Time table with parallel group sessions

	8:00 9:00	9:00 10:00	10:00	11:00	12:00	13:00	14:00	15:00 16:00	16:00 17:00	17:00 18:00	18:00	19:00	20:00
	3.00	10.00	ENG	F Dj	13.00	14.00	13.00	10.00	MAR	U Gp	13.00	20.00	21.00
Monday	Monday OOA P St OOA P Dv		BSYV Po		MAR V Gp		OOA T Shi						
		BSY OOA	P Ni			ALD U Ue		MAR	U Gp				
Tuesday		BSY	P Ne		ALD V	Ue	TEI2	U Na	BSY U Po				
		TEI2	P Na				BSY	BSY U Po		MINT T ShE			
	004	U St			OOA V	St	OOA	U St	ALD	U Ue			
Wednesday	MA2	<i>U</i> Тр	MA2	V Тр	OOA V	Dv	ALD	ALD U Ue		U Dv			
	ENG	FNn											
			OOA	V St			ENG	F Ge	OOA	U Dv			
Thursday	TEI2	VHa			MADI	SbI2	MA2	U Su	MA2 U Su		MINIT	T Shi	
mursuay			OOA	V Dv	MAZ / S	51112	ALD U	J Ue			Null VI	/ 0/11	
							ENG	F Db					
Friday	MA2	V Tp	MA2	<i>U</i> Тр	TEI2 V Ha		TEI2	P Ha					
- That y		~	TEI2	U Ha				OOA P Le					

Goebbels, Pfeiffer: Student Sectioning. -1-

Model and Notation

student $s \in [S] := \{1, 2, \dots, S\}$ is enrolled for a module $k \in [N]$, i.e. $c_{s,k} = 1$ $b_{k,j,s} = 1$ $\boxed{\text{group} \quad G_{k,1} \quad G_{k,2} \quad G_{k,3} \quad \dots \quad G_{k,j} \quad \dots \quad G_{k,n_k}}$ $a_{k,j,i,l} = 1$

time slot	$T_{k,1}$	$T_{k,2}$		$T_{k,i}$		T_{k,m_k}
time sub-slot	$T_{k,1,1}$	$T_{k,2,1}$		$T_{k,i,1}$		$T_{k,m_k,1}$
	÷	÷	÷	÷	÷	÷
	$T_{k,1,l}$	$T_{k,2,I}$		$T_{k,i,l}$		$T_{k,m_k,l}$
	÷		÷	÷	÷	÷
	$T_{k,1,p_k}$	$T_{k,2,p_{k}}$		T_{k,i,p_k}		$T_{k,m_{k},p_{k}}$

Goebbels, Pfeiffer: Student Sectioning. -2-

Model and Notation

student $s \in [S] := \{1, 2, \dots, S\}$ is enrolled for a module $k \in [N]$, i.e. $c_{s,k} = 1$ $b_{k,j,s} = 1$ group $|| G_{k,1} || G_{k,2} || G_{k,3} || \dots || G_{k,j} || \dots || G_{k,n_k}$ $a_{k,j,i,l} = 1$

time slot	$T_{k,1}$	$T_{k,2}$		$T_{k,i}$		T_{k,m_k}
time sub-slot	$T_{k,1,1}$	$T_{k,2,1}$		$T_{k,i,1}$		$T_{k,m_k,1}$
	:	-	÷	÷	÷	÷
	$T_{k,1,l}$	$T_{k,2,I}$		$T_{k,i,l}$		$T_{k,m_k,l}$
	÷	÷	÷	÷	÷	÷
	$T_{k,1,p_k}$	$T_{k,2,p_k}$		T_{k,i,p_k}		T_{k,m_k,p_k}

Goebbels, Pfeiffer: Student Sectioning. -3-

Model and Notation

student $s \in [S] := \{1, 2, \dots, S\}$ is enrolled for a module $k \in [N]$,								
i.e. $c_{s,k} = 1$								
b	$a_{,j,s}=1$							
group	$G_{k,1} \mid G_{k,1}$	2 G _{k,3}		$G_{k,i}$.	(\hat{a}_{k,n_k}		
	, , ,		1	1		, K		
		$d_{k_{i}}$	<i>j</i> , <i>i</i> , <i>I</i> =	1				
time slot	$T_{k,1}$	$T_{k,2}$		T _{k,i}		T_{k,m_k}		
time sub-slot	$T_{k,1,1}$	$T_{k,2,1}$		$T_{k,i,1}$		$T_{k,m_k,1}$		
	÷	÷	:	:	÷	÷		
	$T_{k,1,l}$	$T_{k,2,I}$		$T_{k,i,l}$		$T_{k,m_k,l}$		
	÷		:	:	÷	÷		
	$T_{k,1,p_k}$	$T_{k,2,p_k}$		T_{k,i,p_k}		T_{k,m_k,p_k}		

Goebbels, Pfeiffer: Student Sectioning. -4-

Restrictions (1)

For each group $G_{k,j}$, binary variables $a_{k,j,i,l}$ are used to assign a time sub-slot:

$$\sum_{i=1}^{m_k} \sum_{l=1}^{p_k} a_{k,j,i,l} = 1.$$
 (1)

Every sub-slot $T_{k,i,l}$ has to be assigned at most once to a group $(k \in [N], i \in [m_k], l \in [p_k])$:

$$\sum_{j=1}^{n_k} a_{k,j,i,l} \le 1.$$
 (2)

Only $q_{k,i}$ groups may be scheduled for a time slot $T_{k,i}$, i.e. $(k \in [N], i \in [m_k])$

$$\sum_{j=1}^{n_k}\sum_{l=1}^{p_k}a_{k,j,l,l}\leq q_{k,l}$$

(3)

Goebbels, Pfeiffer: Student Sectioning. -5-

Restrictions (2)

We use a matrix $C \in \{0,1\}^{S \times N}$ to describe whether a student has enrolled for a module. Thereby, $c_{s,k} = 1$ indicates that student s has chosen module k.

Student s is in group j of module k iff $b_{k,j,s} = 1$.

For $k \in [N]$ and $s \in [S]$, we get condition

$$\sum_{j=1}^{n_k} b_{k,j,s} = c_{s,k}.$$
 (4)

Goebbels, Pfeiffer: Student Sectioning. -6-

Time sub-slots

A group of module k assigned to a sub time-slot $T_{k,i,l}$ of time slot $T_{k,i}$ is taught depending on frequency p_k in following weeks:

frequency p_k	week 1	week 2	week 3	week 4
1	$T_{k,i,1}$	$T_{k,i,1}$	$T_{k,i,1}$	$T_{k,i,1}$
2	$T_{k,i,1}$	$T_{k,i,2}$	$T_{k,i,1}$	$T_{k,i,2}$
4	$T_{k,i,1}$	$T_{k,i,2}$	$T_{k,i,3}$	$T_{k,i,4}$

Goebbels, Pfeiffer: Student Sectioning. -7-

Time sub-slots

A group of module k assigned to a sub time-slot $T_{k,i,l}$ of time slot $T_{k,i}$ is taught depending on frequency p_k in following weeks:

frequency p_k	week 1	week 2	week 3	week 4
1	$T_{k,i,1}$	$T_{k,i,1}$	$T_{k,i,1}$	$T_{k,i,1}$
2	$T_{k,i,1}$	$T_{k,i,2}$	$T_{k,i,1}$	$T_{k,i,2}$
4	$T_{k,i,1}$	$T_{k,i,2}$	$T_{k,i,3}$	$T_{k,i,4}$

A student can be member of groups of different modules that are taught in overlapping time slots but in different weeks. For example let $p_{k_1} = 2$, $p_{k_2} = 4$, and $p_{k_4} = 4$:

week 1	week 2	week 3	week 4
$T_{k_1,i_1,1}$		$T_{k_1,i_1,1}$	
	$T_{k_2,i_2,2}$		
			$T_{k_3,i_3,4}$

Goebbels, Pfeiffer: Student Sectioning. -7-

Time sub-slots with conflicts

Conflicting sub-slots are calculated in advance:

Let a student be assigned to a group that attends a weekly subslot $T_{k_1, i_1, 1}$ of module k_1 .

 \implies He cannot attend other time-overlapping sub-slots.

Goebbels, Pfeiffer: Student Sectioning. -8-

Time sub-slots with conflicts

Conflicting sub-slots are calculated in advance:

Let a student be assigned to a group that attends a weekly subslot $T_{k_1,i_1,1}$ of module k_1 .

 \implies He cannot attend other time-overlapping sub-slots.

A student attends a biweekly sub-slot $T_{k_1,i_1,l}$.

 \implies He cannot attend an overlapping sub-slot $T_{k_2,i_2,l}$ if it is bi-weekly or four-weekly, and $T_{k_2,i_2,l+2}$ if it is four-weekly.

Goebbels, Pfeiffer: Student Sectioning. -8-

Time sub-slots with conflicts

Conflicting sub-slots are calculated in advance:

Let a student be assigned to a group that attends a weekly subslot $T_{k_1,i_1,1}$ of module k_1 .

 \implies He cannot attend other time-overlapping sub-slots.

A student attends a biweekly sub-slot $T_{k_1,i_1,I}$.

Institute for Pattern Recognition

 \implies He cannot attend an overlapping sub-slot $T_{k_2,i_2,l}$ if it is bi-weekly or four-weekly, and $T_{k_2,i_2,l+2}$ if it is four-weekly.

Goebbels, Pfeiffer: Student Sectioning. -8-

Restrictions (3)

For all colliding pairs $(T_{k_1,i_1,i_1}, T_{k_2,i_2,i_2})$ of time sub-slots, all groups $j_1 \in [n_{k_1}], j_2 \in [n_{k_2}]$ and all students $s \in [S]$,

$$a_{k_1,j_1,i_1,h_1} + b_{k_1,j_1,s} + a_{k_2,j_2,i_2,h_2} + b_{k_2,j_2,s} \le 3$$
(5)

has to be fulfilled.

Further restrictions are used to model rules for part-time and dual education students, car pools, learning groups, etc.

Goebbels, Pfeiffer: Student Sectioning. -9-

Objective function: groups of nearly equal size

Difference of sizes of groups j_1 and j_2 of module k is represented by two non-negative variables Δ^+_{k,j_1,j_2} , $\Delta^-_{k,j_1,j_2} \ge 0$:

$$\Delta_{k,j_1,j_2}^+ - \Delta_{k,j_1,j_2}^- = \sum_{s=1}^{S} (b_{k,j_1,s} - b_{k,j_2,s}).$$
(6)

Thus, under above constraints we have to minimize

$$\sum_{k=1}^{N} \sum_{j_1=1}^{n_k-1} \sum_{j_2=j_1+1}^{n_k} (\Delta_{k,j_1,j_2}^+ + \Delta_{k,j_1,j_2}^- - \varepsilon_{k,j_1,j_2}).$$
(7)

Slack variables $0 \le \varepsilon_{k,j_1,j_2} \le \min\{D, \Delta_{k,j_1,j_2}^+ + \Delta_{k,j_1,j_2}^-\}$ allow absolute group size differences to vary between 0 and $D \in \{0, 1, 2, ...\}$ without penalty.

Goebbels, Pfeiffer: Student Sectioning. -10-

Measures to speed-up the program (1)

Certain groups can be assigned to sub-slots in a fixed manner, for example if the number of sub-slots $m_k \cdot p_k$ equals the number of groups n_k . For such modules k we can set

$$a_{k,j,i,l} := \begin{cases} 1 & : \quad j = (i-1) \cdot p_k + l \\ 0 & : \quad \text{otherwise.} \end{cases}$$
(8)

Goebbels, Pfeiffer: Student Sectioning. -11-

Measures to speed-up the program (2)

By assigning groups to sub-slots in a chronologically sorted manner due to their group number, one can avoid many permutations: For all modules $k \in [N]$, all time slots $i_1 \in [m_k]$ and all sub-slots T_{k,i_1,i_1} , $i_1 \in [p_k]$, and all groups $j_1 \in [n_k]$ let

$$\max\left\{\sum_{i_{2}=i_{1}+1}^{m_{k}}\sum_{j_{2}=1}^{j_{1}-1}\sum_{l_{2}=1}^{p_{k}}a_{k,j_{2},i_{2},l_{2}},\sum_{j_{2}=1}^{j_{1}-1}\sum_{l_{2}=l_{1}+1}^{p_{k}}a_{k,j_{2},i_{1},l_{2}}\right\}$$

$$\leq n_{k} \cdot (1-a_{k,j_{1},i_{1},l_{1}}). \tag{9}$$

Goebbels, Pfeiffer: Student Sectioning. -12-

Practical application: summer semester 2019

Presented results belong to our bachelor programs in

- computer science (second and fourth semester)
 - 330 students including 59 dual education and part-time students,
 - 30 modules,
 - up to 8 groups per module
- electrical engineering (second, fourth, and sixth semester)
 - 168 students including 40 dual education and part-time students,
 - 27 modules,
 - up to 4 groups per module

Goebbels, Pfeiffer: Student Sectioning. -13-

Running times

slack size	sorting	init.	computer	electrical
D	(9)	(8)	science	engineering
2	-	-	51.59	0.13
2	-	\checkmark	3.35	0.1
2	\checkmark	-	2.8	0.06
2	\checkmark	\checkmark	1.57	0.05
1	-	-	57.92	0.15
1	-	\checkmark	6.32	0.08
1	\checkmark	-	3.49	0.09
1	\checkmark	\checkmark	3.33	0.07
0	-	-	memory overflow	2.65

IBM ILOG CPLEX processor times (average mean of ten runs) measured in seconds on an Intel Core i5-6500 CPU, 3.20 Ghz x4 with 16 GB RAM.

Goebbels, Pfeiffer: Student Sectioning. -14-

Enhancements

- The program can also be used as an online algorithm for adding late students.
- There might be no feasible solution if students enroll to conflicting modules of different semesters. Such situations can be identified before program execution.
- As a secondary optimization goal, one could maximize the number of students that get commonly assigned to groups along all modules.
- Students who have to repeat modules could be distributed as evenly as possible among groups, since experience has shown that for such students the risk of non-appearance is high.

Goebbels, Pfeiffer: Student Sectioning. -15-

Impressum

Prof. Dr. Steffen Goebbels Niederrhein University of Applied Sciences, iPattern Institute E-Mail: steffen.goebbels@hsnr.de Tel.: +49 2151 822 4648

Goebbels, Pfeiffer: Student Sectioning. -16-