
Quality enhancement techniques for building models
derived from sparse point clouds

This is a self-archived version of a paper that appeared in the Proceedings of the

International Conference on Computer Graphics Theory and Applications (GRAPP), Porto, 2017, 93-104

Steffen Goebbels1 and Regina Pohle-Fröhlich1

1Institute for Pattern Recognition, Faculty of Electrical Engineering and Computer Science, Niederrhein University of

Applied Sciences, Reinarzstr. 49, 47805 Krefeld, Germany
{Steffen.Goebbels, Regina.Pohle}@hsnr.de

Keywords: Point clouds, building reconstruction, CityGML, linear optimization, true orthophotos

Abstract: This paper describes processing steps that improve both geometric consistency and appearance of CityGML

models. In addition to footprints from cadastral data and sparse point clouds obtained from airborne laser

scanning, we use true orthophotos to better detect and model edges. Also, procedures to heal self-intersection

of polygons and non-planarity of roof facets are presented. Additionally, the paper describes an algorithm

to cut off invisible parts of walls. We incorporate these processing steps into our data based framework for

building model generation from sparse point clouds. Results are presented for German cities of Krefeld and

Leverkusen.

1 INTRODUCTION

During recent years, 3D city models have become

increasingly important for planning, simulation, and

marketing, see (Biljecki et al., 2015). CityGML is

the XML based standard for exchanging and storing

such models, see (Gröger et al., 2012). A common

approach to automate the generation of city models

is to use cadastral data in combination with point

clouds from airborne laser scanning. However, pub-

licly available point clouds of our home country of-

ten are sparse and currently consist of less than ten

points per square meter. This makes it very difficult

to recognize small roof structures which are typical

for dormers and tower roofs.

There are two main approaches to roof reconstruc-

tion (see (Tarsha-Kurdi et al., 2007), cf. (Haala and

Kada, 2010; He, 2015; Henn et al., 2013; Perera and

Maas, 2012)): Model driven approaches select stan-

dard roofs from a catalogue so that they optimally fit

with the points from the cloud. In general, only larger

roof structures find their way into these building mod-

els. To the contrast, data driven methods detect planes

and combine even small roof facets to complete roofs

(see e. g. (Elbrink and Vosselman, 2009; Kada and

Wichmann, 2013)). Our experiments in (Goebbels

and Pohle-Fröhlich, 2016) show that a data driven ap-

proach even is able to deal with dormers, but their

outline might be distorted due to sparse coverage by

laser scanning points. Therefore, one needs additional

information to correctly model such small structures.

For example, in (Wichmann and Kada, 2016) simi-

lar dormers are detected to merge their point clouds.

Thus, a prototype dormer model can be generated

based on a much higher point density. Also, Demir et.

al. describe in (Demir et al., 2015) a procedure to de-

tect repeating structures in point clouds. In this paper

Figure 1: Orthophoto (left) vs. true orthophoto (right)

we use true orthophotos as additional information. An

orthophoto is a geometrically corrected areal photo

that fits with the coordinate system at ground level.

In a true orthophoto, not only the ground level fits

with the coordinate system but also all levels above

the ground including the roof, see Figure 1. We de-

tect edges of such photos and adjust models according

to these edges.

The given paper is not only concerned with better

modeling structures but also with improving geomet-

ric consistency, cf. (Gröger and Plümer, 2009; Zhao

et al., 2013). One can apply general methods for re-

pairing arbitrary 3D polygon models. But most build-

ing models have vertical walls, so that one only has

to deal with roof structures that can be projected to

2D. Zhao et al. propose an approach that corrects all

types of geometric error using shrink-wrapping that

works on a watertight approximation of the tessellated

building. Alam et al. (Alam et al., 2013) describe

methods to correct single geometric problems of ex-

isting CityGML models. We present complementary

and different processing steps to improve such single

aspects of geometric quality during model generation.

The algorithms deal with self-intersecting polygons,

planarity of polygons, and correctness of wall bound-

aries. Violation of planarity is a common problem of

city models. It is regarded as difficult to correct. We

fix missing planarity with a surprisingly simple but

powerful linear program. The ideas are applied but

not limited to CityGML.

2 PREVIOUS WORK

We apply the algorithms of this paper in con-

nection with our model generation workflow in

(Goebbels and Pohle-Fröhlich, 2016), cf. Figure 2. In

this section, we shortly summarize our previous work

and explain how the subsequent sections contribute to

this automated model generation workflow. However,

our workflow only serves as an example and might be

replaced by other methods.

Figure 2: City model of our hometown

We detect roof facets on a height map that is inter-

polated from the sparse point cloud. The height map

consists of a raster with 10× 10 cm2 cell size which

fits with the accuracy of data. It is partially initialized

with the cloud points. To complete the map, we use

an interpolation method that maintains step edges.

Before we detect roof planes using a RANSAC

algorithm, we first classify regions according to gra-

dient directions. To this end, we handle all regions

with gradients shorter than a threshold value as flat

roofs. These areas might have arbitrary and noisy

gradient angles. For remaining areas we determine

minima of a gradient angle histogram. Each inter-

val between two subsequent minima classifies the an-

gles that belong to roof facets with approximately the

same gradient direction. On regions of such homo-

geneous gradient angles we estimate planes and find

roof facets using RANSAC. Filtering by gradient an-

gles excludes outliers. It also avoids difficulties with

RANSAC. For example, we do not find planes that in-

tersect with many roof facets without themselves be-

ing a roof plane. The intermediate result is a 2D raster

map in which cells are colored according to the roof

facet they belong to.

We complete gaps in the raster map of roof facets

using region growing. To maintain the characteris-

tic appearance of the roof, we consider intersection

lines between estimated planes (ridge lines) and step

edges according to the height map as boundaries for

growing. However, small structures like dormers do

not show straight and parallel edges after this proce-

dure. To improve model quality, we now addition-

ally consider cadastral building part information and

edges that are visible in true orthophotos, see Section

4.

From the raster map we can directly determine in-

ner roof facets that completely lie within a surround-

ing facet. Such inner facets become openings in the

surrounding facet polygon. That is also true for open-

ings of a building’s footprint from cadastral data. Bor-

der polygons of other openings are outer polygons of

inner roof facets (with inverse orientation) so that we

only have to detect outer polygons.

We determine each roof facet’s outer 2D boundary

polygon using Pavlidis algorithm that moves along

the facet’s contour. Leading to a watertight roof,

we determine and merge polygon segments that are

shared between adjacent facets. A topologically rele-

vant vertex is a vertex at which more than two roof

facets meet. Such vertices are detected. Then 2D

roof polygons are simplified using a modified Ramer-

Douglas-Peucker algorithm. This algorithm does not

allow topologically relevant vertices to be removed

from the polygons. Therefore, the roof remains wa-

tertight.

To overcome the precision that is limited by the

10×10 cm2 cell size, we project vertices to edges of

the cadastral footprint and to intersection lines (ridge

edges) as well as to intersection points of ridge lines.

This might lead to self-intersecting polygons. A so-

lution to resolve this problem is described in Section

5.

To generate a 3D model, height values have to be

added to the 2D polygons. These heights are com-

puted using estimated plane equations. To avoid small

artificial step edges, mean values are used for vertices

2

with same x- and y-coordinates but only slightly dif-

ferent z-coordinates that lie within a threshold dis-

tance. This deliberately violates planarity of roof

facets. To heal this problem, we use linear opti-

mization in a post-processing step, see Section 6.

CityGML requires planarity, see (Gröger et al., 2012,

p. 25). To some extend, many city models violate this

requirement, cf. (Wagner et al., 2013), and can be cor-

rected using our linear program. However, our work-

flow can alternatively generate planar roof facets by

not using mean values and allowing small step edges.

Then linear optimization can be used to eliminate step

edges instead of establishing planarity, see Section 8.

Another CityGML requirement is that, together

with the ground plane, roof and wall polygons com-

pletely belong to a building’s outer hull. Therefore,

we have to cut away invisible segments of walls. The

linear program for planarization might change slopes

of roof facets which in turn influences visibility of

walls. In Section 7 we finally describe a wall pro-

cessing step that has to run after planarization.

The complete workflow consists of following

steps:

• Computation of a height map that is interpolated

from the point cloud

• Estimation of roof facets in 2D raster domain

• Adjusting boundaries, see Section 4

• Contour detection gives 2D boundary polygons

• Simplification of boundary polygons and mapping

to ridge lines, step edges, etc. (might lead to addi-

tional self-intersections)

• Resolving self-intersections (see Section 5)

• Adding z-coordinate values

• Planarization of roof facets (see Section 6)

• Cutting and merging walls to visible segments

(see Section 7)

3 REFERENCE DATA SET

We apply the presented techniques to a square

kilometer of the city center of the German city of

Krefeld with 3987 buildings that we process from a

sparse point cloud with five to ten points per square

meter, see Figure 3. The area corresponds to the UTM

interval [32330000,32331000]× [5689000,5690000].
Additionally, we use data of the city of Leverkusen.

Figure 3: City center as reference data set

4 ADJUSTING BOUNDARIES OF

ROOF FACETS

In our workflow, we generate a 2D raster map in

which pixel colors refer to corresponding roof facets,

see Figures 4–6. However, due to the sparse point dis-

tribution of the reference laser scanning data, bound-

ary contours of small structures like dormers are not

straight and are only approximately correct. There

are also gaps in the raster map. We complete the

map and optimize boundary contours by applying re-

gion growing. The idea is to find candidates of true

boundaries that become limits for the growing pro-

cess. We obtain such candidate lines from the point

cloud as well as from additional data sources. For

example, we compute intersection lines of estimated

plane equations that correspond with ridge lines, see

Figure 4. Cadastral footprints of building parts (see

Figure 4: Intersection lines between estimated planes

Figure 5) and edges of true orthophotos are additional

information. It is important that additional data are

optional and not required. Only a minority of build-

ings possess building part definitions and such cadas-

tral data often do not cover dormers. If available,

one can generate a true orthophoto from overlapping

areal images - for example using the Structure from

Motion algorithm. Our pictures were computed from

such overlapping photos. An alternative method is to

improve orthophotos with the help of terrain and 3D

building models. Vice versa, there also exist various

approaches to combine LIDAR point clouds with in-

formation from areal images to improve 3D building

3

Figure 5: Raster maps of roof facets (left): Red cadastre
polygons are borders of building parts, black areas could
not be associated with roof facets. The picture on the right
hand side shows the derived model.

modeling. For example, Tong et. al. (Tong et al.,

2012) use edges of (true) orthophotos to adjust step

edges of flat roofs in a city model that is based on a

Delauny triangulation. Arefi and Reinartz (Arefi and

Reinartz, 2013) decompose buildings and fit paramet-

ric roof models according to ridge lines detected from

true orthophotos. In our experiments, we try to uti-

lize all types of edges to adjust roof boundaries that

already have been obtained from the point cloud.

We use true othophotos with pixels that represent

areas of 10× 10 cm2. Although the photos originate

from areal images with only 60% horizontal and 50%

vertical overlap, edges of the images fit well with laser

scanning data within our computing tolerance of 10

cm2, cf. Figure 6. However, edges tend to be not ex-

actly straight. Also, a minor problem is that roofs may

have textures showing tiles or tar paper with many

edges. Unfortunately, shadows lead to more signif-

icant additional edges. A lot of research deals with

Figure 6: Red pixels belong to edges of a true orthophoto.
Colored areas belong to planes that we detect in the laser
scanning point cloud. Both data sources match quite well.
Small dormers are not sufficiently covered by laser scanning
points. Boundaries of larger dormers can be adjusted to the
edges.

removal of shadows, cf. (Guo et al., 2011) and the

literature cited there. However, our experiments with

the algorithm of (Finlayson et al., 2002) did not gave

sufficient results. A reason might be the variety of col-

ors of our arial photos. But in our processing pipeline,

edges only act as limits for region growing and are not

used to detect roof facets. Therefore, wrongly placed

edges do not heavily disturb results: If an edge crosses

an interior region of a roof facet, then the facet’s area

grows on both sides of the edge. Thus, the edge be-

comes no boundary of the facet. However, shadows

may hide useful edges.

To find relevant edges with Canny edge detector,

one has to individually find a threshold that excludes

irrelevant edges from textures. Instead, we gener-

ate a kind of principal curvature image without need-

ing to select a threshold value, see Figure 7. After

anisotropic filtering, we convert the orthophoto to a

grey image and compute second partial derivatives for

each pixel position in terms of a Hessian matrix, a

symmetric matrix with real eigenvalues. Then we fil-

ter for pixel positions for which the matrix has a lo-

cally largest absolute eigenvalue, i.e., in terms of ab-

solute values, the eigenvalue has to be larger than the

eigenvalues of Hessian matrices of the two horizontal,

vertical or diagonal neighbors. At such positions, an

eigenvector ~dλ of the eigenvalue λ with largest abso-

lute value |λ| points into the direction of largest ab-

solute curvature. It is orthogonal to an eigenvector ~dµ

of the eigenvalue µ, |µ| ≤ |λ|. If additionally |λ| > 0

and |µ| ≈ 0, then curvature is large in one direction

only and ~dµ is orthogonal to that direction. Thus, ~dµ

is parallel to an edge. We mark the corresponding po-

sition in a picture E of edges. Typically, the Hessian

matrix is used to find positions like corners, where

local geometry changes in two directions. We use it

differently to detect changes that only occur in one di-

rection. As a side effect, this direction can be used to

filter for edges that are parallel or orthogonal to seg-

ments of the building’s footprint.

Edges might be not connected in E. We connect

them by computing the principal curvature image in a

higher resolution. A reduction of the resolution (su-

persampling) then closes most gaps.

Figure 7: Results of Canny edge detector (middle) vs. our
curvature based method (right)

Once we have derived boundaries for region grow-

ing, we eliminate noise near computed and detected

edges, especially near pixels of E. Noise consists of

pixels at the wrong side of a line. To this end, we re-

move pixels that represent points closer than 30 cm

to these lines, depending on the type of line. Then,

in a first pass of region growing, we expand each col-

ored area into the free space that has been created by

4

removing pixels of the area’s color. In doing so, we

do not cross the lines under consideration. The out-

come is that pixels on wrong sides of lines are deleted.

This gives straight boundaries at ridge lines, at edges

of building parts and at edges of the true orthophoto.

However, by deleting pixels, facets might become un-

connected. Such facets have to be split up into sepa-

rate connected components.

In a second pass of region growing, we let the col-

ored regions grow until they collide or reach one of

the previously discussed lines or pixels of E. Addi-

tionally, large height jumps (step edges) in the height

map limit region growing. Step edges with small

height differences can not be detected from the inter-

polated height map dependably. Here the edges from

orthophotos come into play.

A third pass of region growing is needed to take

care of areas that are still not colored. In this pass,

only other regions and the footprint from cadastral

data act as boundaries.

Figure 8 shows excerpts from a city model before

planarization is performed (see Section 6). Region

growing based on edges of the true orthophoto sig-

nificantly improves the original model. However, due

to the resolution of data and quality of true orthopho-

tos, the outcome is far from being perfect. But it is a

good basis to apply heuristics that lead to parallel or

orthogonal edges.

5 CORRECTING

SELF-INTERSECTING ROOF

POLYGONS

Each roof facet consists of exactly one outer poly-

gon and zero or more inner polygons that define open-

ings within the roof. The outer polygon is oriented

counter-clockwise, the inner polygons are oriented

clockwise. CityGML does not allow polygons to have

self-intersections. However, such intersections often

do occur either because of the roof’s topology or be-

cause of over-simplification. Therefore, we recur-

sively have to split up polygons until all intersections

are eliminated. We do this in the x-y-plane and add

height values (z-coordinates) later. To begin with, we

compute all points of self-intersection. If an intersec-

tion point is no known vertex, then we add it as a new

vertex to the polygon, cf. (Bogdahn and Coors, 2010).

But we also add it to all other polygons that cross that

point. This is necessary to easily decide about wall

visibility, see Section 7. Now, we have to split up each

polygon at vertices that occur more than once within

the polygon.

Figure 8: Boundaries of the upper model are adjusted to
edges of a true orthophoto. This results in the second pic-
ture. Due to the region growing algorithm, some small roof
segments vanish, other small facets appear.

To simplify the outer polygon, we have to distin-

guish between two general cases of self-intersection

at a vertex: The polygon might really cross itself (case

a)) or it is tangent to itself (case b)). We resolve inter-

sections using two passes. The fist pass handles case

a), the second one deals with b):

a) This is an error situation that might occur if one

snaps vertices to other places like ridge lines. For

example, vertex A in Figure 9a) might have been

moved upwards. After dividing the polygon into

non-self-intersecting segments, all segments with

clockwise orientation (like the dark green triangle

in the figure) have to be removed. The space cov-

ered by this segment might also be shared with

multiple adjacent roof facets. To heal this error

5

in practice, it is often sufficient to snap the wrong

segment’s vertices to the nearest vertex of the seg-

ment’s longest edge.

b) This is a regular situation. As in a), we split up

into non-self-intersecting polygons. We discard

polygons with zero area that occur if there are

edges that are used twice (different directions of

traverse, see edges between vertices A and B in the

second example of Figure 9b)). All segments with

counter-clockwise orientation become new outer

polygons. The second example of Figure 9b) is re-

solved to two outer polygons. All segments with

clockwise orientation become additional new in-

ner polygons. This happens in the first example

of Figure 9b).

 a)

 b)

A A

A
A A B

Figure 9: Resolving self-intersections.

To simplify previously existing inner polygons,

we first merge them if possible: We compute a list

of all edges of all inner polygons. Then we remove

edges that occur twice but with different direction of

traverse. We put together remaining edges to new in-

ner polygons. Then we split them up in the same man-

ner as the outer polygon with one exception: Under

the preliminary that openings like the one in the first

example of 9b) are not part of the outer surrounding

facet, openings of inner polygons are not relevant, we

do not have to recursively generate inner polygons of

inner polygons. Thus, such polygons are discarded.

Now, the roof facet is decomposed into a list of

one or more non-self-intersecting outer polygons and

a list of zero or more non-self-intersecting inner poly-

gons. For each inner polygon, we have to find the

unique outer polygon that surrounds it. Then we can

write a separate roof facet for each outer polygon with

its corresponding openings, i.e., inner polygons.

For the square kilometer of the city center, the al-

gorithm has to resolve 174 points of self-intersection

with crossing. These points result from merging ver-

tices and snapping vertices to ridge lines. Also, poly-

gons are separated at 450 tangent points.

6 PLANARIZATION OF ROOF

FACETS

CityGML only offers primitives to describe pla-

nar surfaces. Therefore, e.g., dome roofs or curved

roofs have to be approximated by plane fragments.

However, often CityGML models violate planarity to

some extend. The easiest way to heal non-planar sur-

faces is to triangulate them. This actually is done in

practice, see (Boeters et al., 2015). More sophisti-

cated algorithms optimize roof structures. By locally

adjusting a single roof facet to become planar, adja-

cent facets might loose this property. Therefore, in

contrast to the algorithm in (Alam et al., 2013), we

solve a global optimization problem to establish pla-

narity of all roof facet’s at the same time. Due to the

linear nature of roof planes, linear programming ap-

pears to be an appropriate means. This approach dif-

fers from more general shape preserving algorithms

based on non-linear optimization, cf. (Bouaziz et al.,

2012; Deng et al., 2015; Tang et al., 2014) and the

literature cited there. Non-linear optimization of en-

ergy functions in fact is standard in architecture re-

construction. Another example ist the work of Arikan

et al. (Arikan et al., 2013). They use a Gauss-Seidel

algorithm to snap together polygons.

We execute the linear program with the simplex

algorithm that is implemented in the GNU Linear

Programming Kit library GLPK (Makhorin, 2009). In

brief, the basic idea behind such a linear program is

presented in (Goebbels et al., 2017). Here we give an

extended description that also covers additional rules

and refinements that are necessary to make the solu-

tion work in practice.

Pk, k ∈ {1,2, . . . ,n}, denotes a roof polygon with

vertices pk,1, . . . , pk,mk
∈V ,

pk, j = (pk, j.x, pk, j.y, pk, j.z),

where V ⊂ R
3 is the roof’s finite vertex set.

The task is to replace z-coordinates pk, j.z with

new height values

pk, j.h = pk, j.z+ pk, j.h
+− pk, j.h

−,

pk, j.h
+, pk, j.h

− ≥ 0, such that the polygons become

planar. We do not change x- and y-coordinates dur-

ing this processing step. This is important to keep

the footprint from cadastral data and to obtain a linear

optimization problem. A related approach for quad-

rangular meshes is presented in (Mesnil et al., 2016).

6

It propagates z-coordinated changes by solving linear

equations to keep surface elements planar.

For each polygon Pk, we determine three non-

collinear vertices pk,u, pk,v, and pk,w such that, if pro-

jected to the x-y-plane, pk,u and pk,v have a largest

distance. Then pk,w is selected such that the sum

of x-y-distances to pk,u and pk,v becomes maximal

and vectors ~ak := (pk,u.x− pk,v.x, pk,u.y− pk,v.y) and
~bk := (pk,w.x− pk,v.x, pk,w.y− pk,v.y) become linear

independent.

We compare all vertices of Pk with the

reference plane defined by the three points

(pk,u.x, pk,u.y, pk,u.h), (pk,v.x, pk,v.y, pk,v.h), and

(pk,w.x, pk,w.y, pk,w.h).
According to CityGML guidelines, one has to

consider all combinations of three non-collinear ver-

tices and compare against the corresponding planes

(see (SIG3D, 2014, p.5)). But for numerical stability

we restrict ourselves to the previously selected ver-

tices with large distances.

We can uniquely write each point (pk, j.x, pk, j.y),
j ∈ {1, . . . ,mk}, as linear combination

(pk, j.x, pk, j.y) = (pk,v.x, pk,v.y)+ rk, j~ak + sk, j
~bk

with scalars rk, j, sk, j. Using constants

ck, j := −pk, j.z+(1− rk, j − sk, j)pk,v.z

+rk, j pk,u.z+ sk, j pk,w.z,

we introduce auxiliary variables αk, j defined by

αk, j := −pk, j.h
++ pk, j.h

−

+(1− rk, j − sk, j)(pk,v.h
+− pk,v.h

−)

+rk, j(pk,u.h
+− pk,u.h

−)

+sk, j(pk,w.h
+− pk,w.h

−)+ ck, j. (1)

If the facet Pk is planar then αk, j = 0 for all j. But be-

cause coordinates typically are rounded to three dec-

imals in CityGML model files, we have to allow αk, j

to be within certain bounds:

−δk ≤ αk, j ≤ δk.

To define bound δk, let νk be the reference plane’s

normal vector. Since the plane belongs to a roof facet,

we can assume νk.z > 0. Let µ be an error threshold

(for example µ := 0.001 m if coordinates are given in

millimeters), then

δk := µ+

√

1−νk.z2

νk.z
·
√

2 ·µ. (2)

This means that each vertex pk, j has to be closer to

the reference plane than

νk.z ·δk = µ
(

νk.z+
√

2
√

1−νk.z2
)

.

The right side reaches a maximum for νk.z = 1/
√

3

so that the maximum distance to the plane is less or

equal
√

3µ.

In bound (2), the first summand µ allows z-

coordinates to vary up to µ. The second expression

is constructed to take care of deviations into x- and y-

directions up to µ. Depending on the normal νk, such

deviations result in height changes on the reference

plane that are up to a magnitude of

√
1−νk.z2

νk.z
·
√

2 ·µ. If

the roof facet has large slope and appears to be nearly

vertical, then νk is close to zero and we allow large

deviations of z coordinates. When processing the ref-

erence data, such larger bounds in fact are required to

maintain the shape of some tower roofs, see Figure

10.

Figure 10: If one chooses µ as a bound for height
changes and does not consider rounding errors of x- and y-
coordinates, then linear optimization changes the shape of
the tower (from left to right).

Depending on the model’s application, it might

be necessary to make changes to certain roof vertices

more expensive. For example this is the case if ver-

tices belong to facades that should be textured with

photos (cf. Figure 11). Such vertices often have x- and

y-coordinates that also occur within the terrain inter-

section curve of a building. We introduce costs to the

objective function in terms of the weights ω(p). Such

weights do not influence the existence of solutions.

Summing up, we use a linear program with struc-

tural variables pk, j.h
+ and pk, j.h

− for pk, j ∈ V , aux-

iliary variables αk, j, k ∈ {1, . . . ,n}, j ∈ {1, . . . ,mk},

and weights ω(p), p ∈V , see formulas (1, 2):

Minimize ∑
p∈V

ω(p)[p.h++ p.h−]

s.t. p.h+, p.h− ≥ 0, −δk ≤ αk, j ≤ δk

for all p ∈V , k ∈ {1, . . . ,n}, j ∈ {1, . . . ,mk}.

We are looking for a global minimum that always

exists because each flat roof is a feasible solution.

But the global minimum might require large height

changes for single vertices. To this end, we also intro-

duce a bound ε > 0 for height changes at each vertex:

p.h+ ≤ ε, p.h− ≤ ε for all p ∈V.

7

Figure 11: Texturing of facades requires higher precision
of z-coordinates. Black areas between textures and roofs
indicate that walls are too high whereas slopes of roof facets
are too small.

If one chooses ε too small, then there might be no

feasible solution. Therefore, we start planarization of

a building with a small value (ε = 0.1 m) and then

iteratively double it until a solution is found.

Figure 12: Shed roofs or dormers have walls (step edges)
within a roof.

If there are vertices with same x- and y-

coordinates but different z-values (see Figure 12),

then in an optimal solution the order of their z-

coordinates might be different. Then the set of vis-

ible walls and the appearance of the roof might also

change. To avoid this, we sort the vertices by increas-

ing z-coordinates. Let v1, · · · ,vl ∈ V be vertices with

vi.x = v j.x, vi.y = v j.y, 1 ≤ i, j ≤ l and

v1.z ≤ v2.z ≤ ·· · ≤ vl .z.

For 1 ≤ i < l we add constraints

vi+1.z+ vi+1.h
+− vi+1.h

−− vi.z− vi.h
++ vi.h

− ≥ 0.
(3)

Although we use weights to make changes to fa-

cades more expensive, experiments show that vertices

of upper wall edges might change their heights in-

dependently. Vertices with the same original height

then might get different z-coordinates so that corre-

sponding facade edges get a wrong slope. Therefore,

we collect all pairs of vertices of upper facade edges

for which the vertices have approximately the same

z-coordinates. Then we add rules that ensure that for

each pair the new height values do not differ to much

from each other.

Also, one has to add lower bounds v.z + v.h+ −
v.h− ≥ b to ensure that changed height values are not

below the ground plane z-coordinate b of each build-

ing.

If two roof polygons share three or more non-

collinear vertices then optimization can’t find differ-

ent planes for these polygons. Therefore, prior to

running the linear program, we analyze sequences

of three consecutive non-collinear vertices that are

shared with same z-coordinates between each two

roof facets. If one roof facet is an inner polygon of the

other facet then we merge both roof segments. This

reduces the number of roof facets and simplifies the

model. Otherwise, if the z-coordinate of the middle

vertex was replaced by a mean value to avoid step

edges, we undo that modification.

Nevertheless, the optimization changes normal

vectors of roof segments. We allow that. But if one

wants to exclude such solutions that involve larger

changes of normal vectors, one can add further re-

strictions to the linear program that bound x- and y-

coordinates of normal vectors only to vary in a cer-

tain range defined by κ ≥ 0. In order to keep con-

straints linear in p.h = p.h+ − p.h−, we do not nor-

malize cross products of vectors that contain struc-

tural variables. Let ν̃ := (pk,v − pk,u)× (pk,w − pk,u)
then conditions read (1 ≤ k ≤ n):

−κ|ν̃| ≤ [(pk,v.y− pk,u.y)(pk,w.h− pk,u.h)

−(pk,v.h− pk,u.h)(pk,w.y− pk,u.y)]− ν̃.x ≤ κ|ν̃|.
−κ|ν̃| ≤ [(pk,v.h− pk,u.h)(pk,w.x− pk,u.x)

−(pk,v.x− pk,u.x)(pk,w.h− pk,u.h)]− ν̃.y ≤ κ|ν̃|.

Under these restrictions, optimization of some build-

ings may fail so that roofs keep unevennesses. There

is a trade-off between planarity and authenticity of

roof slopes.

In our reference data set, 59% of buildings be-

come 0.001-approximate planar if we set threshold

value ε to 0.1. We do not use GLPK’s exact ratio-

nal arithmetic because of performance issues. The

standard float arithmetic causes some rounding errors.

If we apply the algorithm to its own output, then we

see that still not all buildings have approximate pla-

nar roof facets. But then all buildings become ap-

proximate planar with ε = 0.1. Thus, the true share

of buildings that are already given with approximate

planar roof facets is up to 59%.

If we successively double ε to 0.2, 0.4, 0.8, 1.6,

and 3.2, an additional number of 11%, 10%, 10%,

6%, and 3% of buildings become approximate planar

through optimization. All buildings become approx-

imate planar by choosing ε = 6.4. Figure 13 shows

what happens to the complex roof of a church. Run-

ning time for a single-threaded implementation is less

than five seconds on an i5 processor.

8

Figure 13: Two 3D prints of a church: The silver version
shows the situation before linear optimization. Non-planar
roof facets are triangulated, and some triangles show differ-
ent slopes than others. The red model is the result of pla-
narization. It is free of such artifacts. The figure also shows
visualizations of the two models with different colors for
each roof facet.

7 POST-PROCESSING OF WALLS

After finding planar roof polygons, we generate

vertical walls that reach from roof edges down to the

ground plane. The height of the ground plane is taken

from a digital elevation model. At this point in time,

each wall polygon has four different vertices. To gen-

erate a well-formed CityGML model, we now have

to cut off invisible parts of the walls, see Figure 14.

To this end, we use the precondition that no vertex of

a roof or wall polygon lies on the inner part of any

roof or wall edge. Thus, any vertex also is a vertex of

all adjacent polygons. Therefore, we can determine

visibility by comparing the pair of upper vertices of

each wall with all roof edges between pairs of ver-

tices that have the same x- and y-coordinates as the

two wall vertices. With one exception, there can be at

most two roof edges that fulfill this condition. The ex-

Figure 14: Walls of a conference center and theatre are dis-
played as wire frames, if their normal vector points away
from the view point. Otherwise they are painted grey. The
first figure shows the model with uncut walls. The second
picture only shows parts of walls that are visible from the
outside of each single building (without considering neigh-
bor buildings). The view points through the ground surface
to the sky.

ception is the existence of openings that are modeled

using inner polygons. Other roof facets can be posi-

tioned within openings. If two inner polygons share

a common edge, then there might be up to four roof

edges that have to be considered. Thus we exclude

walls that belong to edges shared between inner poly-

gons from further considerations since they do not be-

long to the building. The procedure in Section 5 takes

care of this.

Obviously, there has to be at least one (first) roof

edge with the same coordinates as the upper wall ver-

tices. If there is a second roof edge with exactly these

coordinates (including z-coordinates), then the edge is

a ridge line and no wall is needed. If there is no sec-

ond other roof edge with same x- and y-coordinates

9

(and arbitrary z-coordinates), then we deal with an

outer wall belonging to the building’s footprint. This

wall is completely visible. There are three remaining

cases, see Figure 15:

a) z-coordinates of the upper wall vertices are both

greater than the corresponding z-coordinates of

the second roof edge: In this case, the lower edge

of the wall has to be replaced by the roof edge.

b) z-coordinates of the upper wall vertices are both

less or equal to the corresponding z-coordinates

of the second roof edge: The wall completely is

invisible because it is adjacent to a higher segment

of the building.

c) One z-coordinate of the upper wall vertices is

greater or equal and one z-coordinate is less or

equal to the corresponding z-coordinate of the sec-

ond roof edge: Only a triangle part of the wall

is visible. A new vertex has to be introduced at

the intersection point between the two edges. The

wall polygon is replaced by a triangle, and the new

vertex also has to be inserted to affected roof poly-

gons.

Case c) is the reason why we cut off invisible parts

of walls only after the linear optimization step. Op-

timization leads to different slopes of roof edges,

so that intersection points might change x- and y-

coordinates. If we would add these intersection points

before optimization takes place, then we would pin

together both roof facets and do not allow x- and y-

coordinate changes. This reduces the number of fea-

sible solutions and might change the appearance of

the roof.

 a) c) b)

Figure 15: Visibility analysis of walls: Red polygons repre-
sent walls and black edges are parts of roof facets.

For the tested square kilometer, 11,015 z-

coordinates of wall polygons are modified according

to case a), 36,619 wall polygons are removed along

case b), and 8,394 walls are replaced by a triangle as

described in case c).

Finally, adjacent walls with equal orientation can

be merged to larger polygons. This happens 15,416

times.

8 CONCLUSIONS AND FURTHER

WORK

Presented techniques have been successfully ap-

plied to improve city models of the cities of Krefeld

and Leverkusen. However, for about 1% of buildings,

enforcing planarity leads to visible changes of roofs’

appearances (z-coordinate errors of more than 2 m).

Section 6 describes a general approach to planariza-

tion that can be applied to arbitrary CityGML mod-

els. But within our workflow we can directly generate

planar roof facets if we do not snap together vertices

to avoid step edges. Then instead of establishing pla-

narity, linear optimization can be used to eliminate

step edges while at the same time planarity is main-

tained. To this end, height differences

v.z+ v.h+− v.h−−u.z−u.h++u.h−

have to be minimized for each pair of vertices u,v ∈
V with u.x = v.x, u.y = v.y, and u.z ≤ v.z, where

v.z − u.z is less than a threshold bound β for un-

wished step heights like β = 0.5 m. Please note that

constraints (3) ensure that such differences are non-

negative. For such vertices u und v, we add sum-

mands w · (v.h+− v.h−−u.h++u.h−) to the original

objective function ∑p∈V ω(p)[p.h++ p.h−], where w

is a large weight that forces height differences to be

smaller than a given precision (if compatible with

constraints) whereas the original objective function

avoids unnecessary height changes. For example

we set w to the overall number of variables times

εmax{ω(p) : p ∈V}/(µ/2) (see Section 6 for mean-

ing of symbols). By allowing local height changes

up to ε := β, the linear program of Section 6 then

minimizes step edges with height differences below

ε. If compliant with auxiliary conditions, height dif-

ferences become smaller than precision so that step

edges vanish. Unfortunately, it turns out that in prac-

tice the optimization of step edges leads to visible roof

changes similar to the changes caused by planariza-

tion.

Starting from scratch, overall processing time for

all of Leverkusen’s 66,400 buildings on 79 square

kilometers is about four hours on two cores of an i5

processor with 4 GB of RAM. The Simplex algorithm

theoretically has an exponential worst-case running

time but turns out to be extremely fast for our small

optimization problems. With respect to worst-case

situations, it could be replaced by an interior point

method so that all processing steps run in polynomial

time.

So far, our processing workflow is data based. We

plan to extend it to a hybrid data and model driven

approach. For special structures with small footprints

10

Figure 16: Preserving rectangular shapes: raster represen-
tation of roof facets without and with shape estimation

like tower spires, we are experimenting to fit objects

from a catalogue. To recognize such structures, we

will both use edges from orthophotos as well as the

interpolated height map. Since many roof facets have

rectangular or triangular shapes, we will detect and

maintain such shapes, see Figure 16 for first results.

In contrast to (Nan et al., 2010), we will not directly

fit geometric objects to the 3D point cloud but use the

2D raster representation.

9 ACKNOWLEDGEMENTS

We would like to thank cadastre offices of the

cities of Krefeld and Leverkusen as well as the state

cadastre office of North Rhine-Westphalia for sup-

porting us with buildings’ footprints, laser scanning

data and true orthophotos. Especially, Johannes

Scharmann and Marco Oestereich gave us valuable

support. Cadastral data are protected by copyright

(Geobasisdaten der Kommunen und des Landes NRW
c©Geobasis NRW 2016).

REFERENCES

Alam, N., Wagner, D., Wewetzer, M., von Falkenhausen,
J., Coors, V., and Pries, M. (2013). Towards au-
tomatic validation and healing of CityGML models
for geometric and semantic consistency. ISPRS Ann.
Photogramm. Remote Sens. and Spatial Inf. Sci., II-
2/W1:1–6.

Arefi, H. and Reinartz, P. (2013). Building reconstruction
using dsm and orthorectified images. Remote Sens.,
5(4):1681–1703.

Arikan, M., Schwärzler, M., Flöry, S., Wimmer, M., and
Maierhofer, S. (2013). O-snap: Optimization-based
snapping for modeling architecture. ACM Trans.
Graph., 32(1):6:1–6:15.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and
Çöltekin, A. (2015). Applications of 3d city models:
State of the art review. ISPRS Int. J. Geo-Inf., 4:2842–
2889.

Boeters, R., Ohori, K. A., Biljecki, F., and Zlatanova,
S. (2015). Automatically enhancing CityGML lod2
models with a corresponding indoor geometry. In-
ternational Journal of Geographical Information Sci-
ence, 29(12):2248–2268.

Bogdahn, J. and Coors, V. (2010). Towards an automated
healing of 3d urban models. In Kolbe, T. H., König,
G., and Nagel, C., editors, Proceedings of interna-
tional conference on 3D geoinformation, International
Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, pages 13–17.

Bouaziz, S., Deuss, M., Schwartzburg, Y., Weise, T., and
Pauly, M. (2012). Shape-up: Shaping discrete ge-
ometry with projections. Computer Graphics Forum,
31(5):1657–1667.

Demir, I., Aliaga, D. G., and Benes, B. (2015). Procedural
editing of 3d building point clouds. In 2015 IEEE In-
ternational Conference on Computer Vision (ICCV),
pages 2147–2155, Washington, DC. IEEE Computer
Society.

Deng, B., Bouaziz, S., Deuss, M., Kaspar, A.,
Schwartzburg, Y., and Pauly, M. (2015). Interactive
design exploration for constrained meshes. Comput.
Aided Des., 61(C):13–23.

Elbrink, S. O. and Vosselman, G. (2009). Building recon-
struction by target based graph matching on incom-
plete laser data: analysis and limitations. Sensors,
9(8):6101–6118.

Finlayson, G. D., Hordley, S. D., and Drew, M. S. (2002).
Removing shadows from images. In Proceedings of
the 7th European Conference on Computer Vision-
Part IV, ECCV ’02, pages 823–836, Berlin. Springer.

Goebbels, S., Pohle-Fröhlich, R., and Rethmann, J. (2017).
Planarization of CityGML models using a linear pro-
gram. In Operations Research Proceedings (OR 2016
Hamburg), pages 1–6, Berlin. Springer, to appear.

Goebbels, S. and Pohle-Fröhlich, R. (2016). Roof recon-
struction from airborne laser scanning data based on
image processing methods. ISPRS Ann. Photogramm.
Remote Sens. and Spatial Inf. Sci., III-3:407–414.

11

Gröger, G. and Plümer, L. (2009). How to achieve con-
sistency for 3d city models. ISPRS Int. J. Geo-Inf.,
15(1):137–165.

Gröger, G., Kolbe, T. H., Nagel, C., and Häfele, K. H.
(2012). OpenGIS City Geography Markup Language
(CityGML) Encoding Standard. Version 2.0.0. Open
Geospatial Consortium.

Guo, R., Dai, Q., and Hoiem, D. (2011). Single-image
shadow detection and removal using paired regions.
In Proceedings of the 2011 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR ’11,
pages 2033–2040, Washington, DC. IEEE Computer
Society.

Haala, N. and Kada, M. (2010). An update on automatic
3d building reconstruction. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 65:570–580.

He, Y. (2015). Automated 3D Building Modeling from Air-
borne LiDAR Data (PhD thesis). University of Mel-
bourne, Melbourne.

Henn, A., Gröger, G., Stroh, V., and Plümer, L. (2013).
Model driven reconstruction of roofs from sparse LI-
DAR point clouds. ISPRS Journal of Photogrammetry
and Remote Sensing, 76:17–29.

Kada, M. and Wichmann, A. (2013). Feature-driven 3d
building modeling using planar halfspaces. ISPRS
Ann. Photogramm. Remote Sens. and Spatial Inf. Sci.,
II-3/W3:37–42.

Makhorin, A. (2009). The GNU Linear Programming Kit
(GLPK). Free Software Foundation, Boston, MA.

Mesnil, R., Douthe, C., Baverel, O., and Léger, B. (2016).
From descriptive geometry to fabrication-aware de-
sign. In Adriaenssens, S., Gramazio, F., Kohler,
M., Menges, A., and Pauly, M., editors, Advances
in Architectural Geometry, pages 62–81, Zürich. vdf
Hochschulverlag.

Nan, L., Sharf, A., Zhang, H., Cohen-Or, D., and Chen, B.
(2010). Smartboxes for interactive urban reconstruc-
tion. ACM Trans. Graph., 29(4):93:1–93:10.

Perera, S. N. and Maas, N. G. (2012). A topology based
approach for the generation and regularization of roof
outlines in airborne laser scanning data. In Seyfert, E.,
editor, DGPF Tagungsband 21, pages 400–409, Pots-
dam. DGPF.

SIG3D (2014). Handbuch für die Modelierung von 3D
Objekten, Teil 1: Grundlagen. Geodateninfrastruktur
Deutschland, 0.7.1 edition.

Tang, C., Sun, X., Gomes, A., Wallner, J., and Pottmann, H.
(2014). Form-finding with polyhedral meshes made
simple. ACM Trans. Graph., 33(4):70:1–70:9.

Tarsha-Kurdi, F., Landes, T., Grussenmeyer, P., and
Koehl, M. (2007). Model-driven and data-driven
approaches using LIDAR data: Analysis and com-
parison. International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences,
36(3/W49A):87–92.

Tong, L., Li, M., Chen, Y., Wang, Y., Zhang, W., and Cheng,
L. (2012). A research on 3d reconstruction of building
rooftop models from LiDAR data and orthophoto. In
Proceedings of the 20th International Conference on

Geoinformatics (GEOINFORMATICS), Hong Kong,
pages 1–5, Washington, DC. IEEE Computer Society.

Wagner, D., Wewetzer, M., Bogdahn, J., Alam, N., Pries,
M., and Coors, V. (2013). Geometric-semantical con-
sistency validation of CityGML models. In Pouliot,
J. and et. al., editors, Progress and New Trends in
3D Geoinformation Sciences, Lecture notes in geoin-
formation and cartography, pages 171–192, Berlin.
Springer.

Wichmann, A. and Kada, M. (2016). Joint simultaneous
reconstruction of regularized building superstructures
from low-density LIDAR data using icp. ISPRS Ann.
Photogramm. Remote Sens. and Spatial Inf. Sci., III-
3:371–378.

Zhao, J., Stoter, J., and Ledoux, H. (2013). A framework for
the automatic geometric repair of CityGML models.
In Buchroithner, M., Prechtel, N., and Burghardt, D.,
editors, Cartography from Pole to Pole, Lecture Notes
in Geoinformation and Cartography, pages 187–202,
Berlin. Springer.

12

