
Line-Based Registration of Photogrammetric Point Clouds with 3D City
Models by means of Mixed Integer Linear Programming

This is a self-archived version of a paper that appeared in the Proceedings of the 13th International Joint Conference on

Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP) - Volume 4: VISAPP, 2018, 299–306

Steffen Goebbels1 and Regina Pohle-Fröhlich1

1Institute for Pattern Recognition, Faculty of Electrical Engineering and Computer Science, Niederrhein University of

Applied Sciences, Reinarzstr. 49, 47805 Krefeld, Germany
{Steffen.Goebbels, Regina.Pohle}@hsnr.de

Keywords: Point Cloud Registration, Linear Programming, Structure from Motion, Building Reconstruction, CityGML

Abstract: This paper describes a method to align photogrammetric point clouds with CityGML 3D city models. Amongst

others, we use photogrammetric point clouds that are generated from videos taken from the driver’s perspective

of a car. Clouds are computed with the Structure-from-Motion algorithm. We detect wall planes to rotate these

clouds so that walls become vertical. This allows us to find buildings’ footprints by accumulating points that

are orthogonally projected to the ground. Thus, the main alignment step can be performed in 2D. To this end,

we match detected footprints with corresponding footprints of CityGML models in a x-y-plane based on line

segments. These line segments are detected using a probabilistic Hough transform. Then we apply a Mixed

Integer Linear Program to find a maximum number of matching line segment pairs. Using a Linear Program,

we optimize a rigid affine transformation to align the lines of these pairs. Finally, we use height information

along CityGML terrain intersection lines to estimate scaling and translation in z-direction. By combining the

results, we obtain an affine mapping that aligns the point cloud with the city model. Linear Programming is

not widely applied to registration problems; however the technique presented is a fast alternative to Iterative

Closest Point algorithms that align photogrammetric point clouds with clouds sampled from city models.

1 INTRODUCTION

Virtual 3D city models are used for simulations

(eg noise maps, lighting models, solar potential ana-

lyzes, flood maps, heat requirement mapping) as well

as for planning purposes like Building Information

Modeling (BIM). CityGML is the XML based de-

scription standard for city models. It offers a concept

of Level of Detail (LoD), see (Gröger et al., 2012)

Most models currently are given in LoD 2 with de-

fined roof facets and walls but without detailed fa-

cade information. Window and door objects belong to

LoD 3. Facade models do not only serve for visual-

ization or planning purposes. For example, gateways

and routes for rescue workers are very interesting in

smart-city applications. Whereas airborne laserscan-

ning point clouds are provided as open data in our

country, they only show roofs but no facades. Facade

data have to be acquired individually. An inexpen-

sive way to obtain photogrammetric point clouds of

facades from videos or overlapping photos is to use

the Structure-from-Motion algorithm (SfM).

We generate dense point clouds from videos taken

either through the front window of a car or by UAVs

with the SfM tool Agisoft Photoscan, see Figure 1.

The tool delivers a cloud of colored points, estimated

camera position and camera parameters for video

frames, and a textured mesh.

It is difficult to do a manual registration of pho-

togrammetric point clouds with sufficient precision to

cleanly project points or textured meshes to CityGML

walls. Therefore, we apply an automatic precise reg-

istration of the point cloud with the city model. As

a preliminary, the cloud has to be coarsely regis-

tered with UTM coordinates, either manually or us-

ing GPS/GLONASS information. The next section

discusses some approaches to do such a precise reg-

istration. In Sections 3–5 we in detail describe our

approach to match line segments by solving a combi-

natorial problem with fast Linear and Mixed Integer

Linear Programs. Section 6 summarizes results.

2 VARIOUS REGISTRATION

APPROACHES

There exists a large variety of point cloud regis-

tration algorithms, see (Maiseli et al., 2017). Most



of them can be classified as non-feature- or feature-

based. However, our input consist of only one (col-

ored) point cloud. The city model basically is a set of

polygons. The easiest way to apply non-feature-based

Figure 1: SfM point cloud, and cloud sampled from
CityGML walls and merged with terrain points from air-
borne laserscanning

algorithms is to sample a point cloud from the city

model. We work with 100 points/m2. Experiments

showed that increased sampling rates only do have

minor influence on registration results. In contrast

to simultaneous localization and mapping (SLAM)

applications, the point clouds might be very differ-

ent: The photogrammetric point cloud covers ground

and vegetation whereas our city models do not. With

regard to the ground, the problem can be healed

by merging the sampled model cloud with a filtered

cloud from airborne laserscanning that only consists

of last pulse terrain points, see see Figure 1. An-

other problem is that buildings are modeled separately

in CityGML. Thus, there exist walls between neigh-

boring buildings that are not visible from the outside.

Therefore, we only consider model walls for sampling

if they are visible from outside the buildings. We also

limit the sampled scene roughly to the area that is cov-

ered by the photogrammetric point cloud.

The standard means to align point clouds is the

non-feature-based Iterative Closest Point (ICP) algo-

rithm, see (Rusinkiewicz and Levoy, 2001).

We did several experiments with Point Cloud Li-

brary’s ICP implementations (version 1.8.0) in point-

to-point and in point-to-plane mode (see (Holz et al.,

2015) and tutorials on http://pointclouds.org/

documentation/tutorials), both with a maximum

correspondence distance of 5m that fits with data.

Whereas the base implementation of point-to-point

ICP might converge very slowly or get stuck in a

sub-optimum, ICP based on Levenberg-Marquard op-

timization and point-to-plane ICP find good solutions.

In point-to-plain mode, distances are not measured

between points but between points and planes de-

fined by estimated local normal vectors (see (Chen

and Medioni, 1992)). This allows for sliding along

wall planes and is better suited to match segments

of planes like facades. Whereas the Levenberg-

Marquard based point-to-point algorithm takes 4507

seconds1 to align the clouds shown in Figure 1, point-

to-plane ICP finishes in 719 seconds. However, our

proposed method terminates in less than 30 seconds

(see St. Anton street scenario in Table 1).

A somewhat related approach is the Normal Dis-

tribution Transform (NDT). Its idea is to replace all

cloud points within a grid cell of the target cloud

by a normal distribution that describes the probabil-

ity of finding a point at a certain position. Instead

of matching single points to each other, the probabil-

ity of points being at the right place (with regard to

the target cloud) can be optimized with Newton iter-

ations, see (Magnusson et al., 2009). This technique

eliminates the time of ICP’s nearest neighbor search.

With a resolution parameter set to 5 and a step size

parameter set to 2.5 Point Cloud Library’s algorithm

aligns the two previously investigated clouds in 396

seconds. For chosen settings, this indeed is faster than

ICP in point-to-plane mode but still significant slower

than our proposed method. In our scenario, success

and running time of NDT heavily depend on choice

of parameters. For example, the method converges to

a wrong alignment for step size 3 but converges to the

correct global optimum for step sizes 1, 2.5, and 5.

For clouds of structured environments, examples

of (Ma et al., 2016) show that there might be problems

with iterative non-feature-based methods. Such prob-

lems occur if clouds overlap only partially or initial

coarse alignment is bad. Also, running times strongly

depend on cloud size and parameters. Another dis-

advantage is that we need additional information like

digital terrain models to enrich sampled clouds.

In our scenarios, walls are dominant structures

and reference surfaces are very simple. Therefore,

we concentrate on pairing specific geometric primi-

tives as do most feature-based registration methods

(cf. (Chuang and Jaw, 2015)). One could directly

detect plane segments that represent walls and align

them with CityGML wall polygons. However, both

detected segments and CityGML polygons are only

approximations of real walls. Also CityGML poly-

gons are simplified due to their level of detail. But

most CityGML models use high quality building foot-

prints from cadastral data. Therefore, we work with

walls’ footprints. Based on RANSAC estimates of

wall planes, we rotate the point cloud so that walls

become straightened up and ground is oriented par-

allel to the x-y-plane. By orthogonally projecting

points to the x-y-plane, walls become visible as dense

1Running times are measured on a single core of a
2.4GHz i5 processor (2013) with 4GB RAM.

2



contours. This basically simplifies the 3D alignment

problem to a 2D task of aligning these contours with

CityGML building footprints. The RANSAC-based

rotation step is similar to the use of angle-features in

the general purpose point cloud alignment algorithm

of (Ma et al., 2016). They compute a rotation ma-

trix based on an angle histogram. Rotation leads to

translation of the histogram that, for example, can be

detected using the Fourier transform shift property2.

However, angle-features become disturbed if different

scaling factors are used for different coordinate direc-

tions during coarse registration. This also is a prob-

lem if one tries to detect rotation between 2D footprint

images based on an angle histogram of Hough lines.

In our scenario, Hough space registration (cf. (Zhao,

2006)) additionally suffers from different lengths of

line segments.

Established alignment procedures for 2D images

mostly avoid to solve an NP-complete combinato-

rial optimization problem. But footprint images of

point clouds and city models are quite different so that

combinatorial optimization promises to deliver results

that are more robust against distortions. We inves-

tigated combinatorial alignment procedures based on

corners of footprints, based on line segments of foot-

prints and based on straight lines covering line seg-

ments. For UAV point clouds covering larger urban

areas, corner-based alignment works well if there are

sufficient many building corners (of different height)

in a scene. In our experiments, we detected building

corners using Harris corner detector and aligned them

with vertices of the city model using a Mixed Integer

Linear Program (MIP) similar to the one in Section

4, see Figure 2. Unfortunately, the videos that we use

Figure 2: Left: Corner-based matching of building walls
detected from a UAV point cloud (see Section 6) with
CityGML model’s walls. Right: Lines that are detected in
the point cloud are matched with CityGML model lines.

for facade detection mostly are taken from street level.

They cover more detail, and corner detection does not

only find significant building corners but also corners

2Sarvaiya, J., Patnaik, S., and Kothari K.: Feature
Based Image Registration Using Hough Transform.
http://psrcentre.org/images/extraimages/48.%2050.pdf
(Accessed 07 July 2017)

of smaller structures. Also, in a straight street with

few intersections, the number of significant corners is

small. Therefore, our implementation of corner based

matching does not work well with this type of point

clouds. Instead, straight lines of building footprints

are significant. Line-based matching approaches have

been used successfully to align images with digital

surface models and airborne laserscanning data, see

for example (Avbelj et al., 2013; Cui et al., 2017).

They have been also used to align two point clouds,

see for example (Li et al., 2012). One can either

match unbounded straight lines or the short bounded

line segments that are part of footprints. There might

be several line segments approximately lying on the

same straight unbounded line. Thus joining line seg-

ments to unbounded lines reduces the number of pos-

sible matching combinations. Whereas matching of

unbounded straight lines works for simple street sce-

narios (cf. Figure 2), it might fail for complex UAV

point clouds that lead to a variety of similar lines.

Therefore, we propose to match line segments (cf.

Figure 4). Whereas (Avbelj et al., 2013) use a sta-

tistical, accumulator based approach to match lines,

(Li et al., 2012) present an iteration scheme and (Cui

et al., 2017) apply non-linear least-squares optimiza-

tion, we use a simpler Mixed Integer Linear Program

to find matching line segment pairs in combination

with a Linear Program (LP) to compute a 2D trans-

formation matrix. However, this requires pre- and

post-processing steps that utilize the vertical nature

of walls.

3 Pre-Processing

First, we both translate photogrammetric cloud

and city model into a local coordinate system with

origin at −~t ∈R
3 to avoid large numerical errors: The

corresponding translation is given by

T =

(

E ~t
(0,0,0) 1

)

∈ R
4×4

with unity matrix E ∈ R
3×3. Then we rotate the pho-

togrammetric cloud to correctly align with the z-axis

and generate a 2D building footprint image as fol-

lows:

Figure 3: Density of point cloud and binary image of likely
wall footprints superposed with CityGML building foot-
prints

3



• To generate a preliminary binary image of likely

wall footprints, a resolution of 9 pixels per

square meter is sufficient for our data, see Fig-

ure 3. We compute minimum and maximum z-

coordinates (height values) of all points with x-

and y-coordinates within the pixel’s area. If these

values at least differ 3.5m in height (one building

level) and if there exist at least eight points with

z-coordinates pairwise belonging to disjoint inter-

vals of width 0.5m then we classify the pixel as

being part of a wall footprint. One could also gen-

erate a density image by counting the points above

the pixel’s area. Then thresholding could give

a wall map. Unfortunately, we work with point

clouds of very different local densities so that it

is difficult to find or generate a suitable threshold

value.

• Walls might not be exactly vertical. Before we re-

duce the cloud to wall and ground points, we have

to rotate it with a matrix D to make walls upright.

To this end, we divide the ground into 10m×10m

sections. For each section we iteratively apply a

RANSAC algorithm to the section’s subset of the

cloud that also corresponds roughly with previ-

ously computed pixels of wall footprints. With

RANSAC we estimate nearly vertical planes for

each section. We collect the normal vectors of

the third of planes with largest number of inliers.

Let N be the set of these normals. We estimate

the common upward-direction of all walls with a

RANSAC algorithm as well: We iteratively select

a plane through the origin and through two non-

collinear points in N. Out of all selected planes

we choose one with the largest number of inliers

p, p ∈ N. Then we apply a rotation D,

D =











cos(β) −sin(β)sin(α) −sin(β)cos(α) 0

0 cos(α) −sin(α) 0

sin(β) cos(β)sin(α) cos(β)cos(α) 0

0 0 0 1











,

to the point cloud that aligns this plane’s normal

vector (n.x,n.y,n.z), n.z > 0, with the z-axis. Let

h = sin(α) ·n.y+ cos(α) ·n.z. Angles are

α = sign(n.y)arccos(n.z/
√

n.y2 +n.z2),

β = sign(n.x)arccos(h/
√

n.x2 +h2).

The approach requires the existence of walls with

different orientations.

• Now we compute a sharper version of the binary

wall footprint image. Since walls should exactly

point upwards after applying D, we can reduce

noise by filtering for even larger height differ-

ences (5m instead of 3.5m) to detect walls.

Our goal is to match the footprint image with a

similar image that we obtain from the city model.

To this end, we draw a single picture of filled foot-

prints of all CityGML buildings, only considering the

area of the photogrammetric point cloud. Then we

detect edges with the Canny operator. These edges

correspond with facades but not with walls between

houses.

Both on the footprint image and on the edge pic-

ture, we apply a probabilistic Hough transform to de-

tect line segments, see Figure 4. In the following sec-

tion we use the sets P and Q that contain line segments

of the footprint image and the model’s edge picture,

respectively.

4 Linear Programs

Linear and Mixed Integer Linear Programming

have been used for registration purposes, see for ex-

ample (Sakakubara et al., 2007; Wang et al., 2017).

However, most alignment procedures use non-linear

optimization. Linear optimization isn’t even listed

amongst the optimization methods for point cloud

alignment in the overview article (Tam et al., 2013).

But if one seeks for a linear or affine transformation

and if one is allowed to measure errors in l1-norm

(sum of absolute values) instead of the widely used

l2-norm (least squares) then Linear Programming is a

very powerful tool. MIP and LP also have been con-

sidered for the generation of CityGML models and

3D modeling. For example, (Boulch et al., 2014) use

a MIP to reconstruct surfaces from point clouds.

The difficulty of our registration task is that

we have to select from a candidate set of line

pairs before we can compute a linear transforma-

tion to align line segments of P with line segments

of Q. Let P = {(p1,1, p1,2), . . . ,(pm,1, pm,2)} and

Q = {(q1,1,q1,2), . . . ,(qn,1,qn,2)}. Each line seg-

ment is defined by its two endpoints that are given

in homogeneous coordinates, for example pi,k =

(pi,k.x, pi,k.y,1)
⊤.

Now we have to determine a linear transform L

that aligns the largest possible subset of P with a cor-

responding subset of Q by using translation, scaling

and rotation as feasible operations.

A common method to find large corresponding

sets of line features is to use RANSAC in Hough

space. For example, (Colleu et al., 2008) use this ap-

proach to match video frames with city model data. In

contrast to this we match bounded line segments with

a MIP that automatically also computes an initial ver-

sion of the transformation matrix.

First, we have to find matching candidate pairs

4



Figure 4: First two pictures: Detected line segments of point
cloud and CityGML model; third picture: Matching line
segments are connected with thin bright lines.

between P and Q. If a binary variable xi, j, 1 ≤
i ≤ m, 1 ≤ j ≤ n, equals one, then the pair

((pi,1, pi,2),(q j,1,q j,2)) is selected for matching. It is

not selected if xi, j = 0. We can a-priori exclude pairs

by setting their binary variables fixed to zero. We do

this if their lines have a distance in Hough space above

a threshold value. Also, we compute a bounding box

for each line segment and extend it by the expected

error of coarse alignment. If bounding boxes of two

line segments do not intersect then we also exclude

the pair. This is the sole step in our alignment method

that might cause it to only find a local but no global

optimum. In contrast to ICP and other non-feature-

based algorithms, what follows describes global opti-

mization.

We have to maximize an objective function like

m

∑
i=1

n

∑
j=1

xi, j (1)

subject to the restriction that there is a linear mapping

L =





s1 cos(α) −s1 sin(α) d1

s2 sin(α) s2 cos(α) d2

0 0 1



 ∈ R
3×3

that approximately maps line of segment (pi,1, pi,2)
onto line of (q j,1,q j,2) if xi, j = 1. Manual coarse reg-

istration should be done so that scaling s1 in x- and

scaling s2 in y- direction is equal: s := s1 = s2. Then

there is less uncertainty and more stability.

There need to exist scalars r1,i, j and r2,i, j such that

for k ∈ {1,2} and

d+
k,i, j −d−

k,i, j := q j,1 + rk,i, j(q j,2 −q j,1)−Lpi,k (2)

there holds true 0 ≤ d±
k,i, j.x ≤ ε, 0 ≤ d±

k,i, j.y ≤ ε.

Thus, the coordinate-wise distance between trans-

formed points Lpi,1, Lpi,2 and the straight line through

q j,1 and q j,2 has to be bounded by a fixed threshold

value ε. We work with ε := 0.5 for selection of can-

didate pairs (distances will be further minimized in a

second optimization step). The source line segment

has to be approximately mapped onto a straight line

going through the target line segment. There is no

need to actually hit the target segment. This allows for

sliding like in ICP point-to-plane mode. Nevertheless,

we match segments and not straight lines because we

a-priori exclude pairs (i, j) of distant segments by set-

ting xi, j = 0.

To obtain a linear problem, we do not compute

sine and cosine functions but seek for a matrix

L =





l1,1 l1,2 l1,3
l2,1 l2,2 l2,3
0 0 1





under restrictions

l1,1 = l2,2,
l1,2 =−l2,1

}

if s1 = s2, (3)

−µ ≤ l1,1 − l2,2 ≤ µ,
−µ ≤ l1,2 + l2,1 ≤ µ

}

if s1 6= s2, (4)

1−δ ≤ l1,1 ≤ 1+δ, −δ ≤ l1,2 ≤ δ, (5)

where δ = 0.3 and µ = 0.1 are small threshold values.

These restrictions avoid that L describes mirroring.

Instead of using simple objective function (1) we

consider the lengths of point cloud line segments as

weights. Let wi be the length of the i-th point cloud

line segment. We extend the objective function to

∑m
i=1 ∑n

j=1 wixi, j. Maximization favors selection of

long line segments.

We write the optimization problem as an Integer

Linear Program with the help of a large number M.

M is used to restrict the distance condition to selected

pairs of line segments while keeping the problem lin-

ear. Let distances d+
k,i, j, d−

k,i, j ∈ (R≥0)3 and matrix co-

efficients lr,c ∈ R, 1 ≤ r ≤ 2, 1 ≤ c ≤ 3:

Max.
m

∑
i=1

n

∑
j=1

wixi, j s.t.

m

∑
i=1

xi, j ≤ 1 for 1 ≤ j ≤ n,
n

∑
j=1

xi, j ≤ 1 for 1 ≤ i ≤ m,

conditions (2) and ((3) or (4)) and (5), and

max{d+
k,i, j.x,d

+
k,i, j.y,d

−
k,i, j.x,d

−
k,i, j.y}+Mxi, j ≤ ε+M.

A MIP in general is NP complete. It very much

depends on the number of candidate correspondences

and on the size of ε how long a solver takes to find

a solution. We use the GNU Linear Programming

Kit library GLPK (Makhorin, 2009) to solve LPs and

MIPs. In most scenarios of this paper, solutions of

the MIPs are found in less than a second. Never-

theless, running times can be decreased. It turns out

that the exclusion of distant line segments from the

matching task allows for an LP relaxation of the MIP.

5



In the relaxed problem, binary variables xi, j are re-

placed by real-valued variables xi, j ∈ [0,1]. It turns

out that values of xi, j become indeed very close either

to zero or to one. We then round them. The tradeoff

of relaxation is that one has to deal with a few wrong

matchings during the following second optimization

step that improves the mapping L:

Based on an optimal solution of the MIP, we de-

fine the set R of pairs (i, j) for which xi, j = 1 so that

for all (i, j) ∈ R distances fulfill 0 ≤ d±
k,i, j.x,d

±
k,i, j.y ≤

ε. To further minimize the errors, we apply another

LP. By using the same variable names as for the MIP,

this LP has to minimize

∑
(i, j)∈R

2

∑
k=1

wi(d
+
k,i, j.x+d+

k,i, j.y+d−
k,i, j.x+d−

k,i, j.y)

subject to (2) for (i, j) ∈ R, and conditions (3) or (4),

and (5).

Weights wi now enforce large line segments to be

matched with higher precision than short ones.

Based on L, we can align the point cloud in the

x-y-plane using matrix

A :=







l1,1 l1,2 0 l1,3
l2,1 l2,2 0 l2,3
0 0 1 0

0 0 0 1






.

5 Post-Processing

Figure 5: Height maps showing minimum and maximum
values of adjusted photogrammetric point cloud and sam-
pled model cloud

Figure 6: A video frame used for point cloud generation,
projection of point cloud onto city model prior to alignment,
and projection of aligned point cloud onto city model

It remains to estimate an additional z-scaling fac-

tor and a z-translation. To this end, we look at ter-

rain intersection points of CityGML models. For each

such point, we have a true z-value zg of the ground

and also determine the height zr of the roof above this

point. We also determine a corresponding lowest and

highest point of the pre-processed point cloud that has

been transformed with A, see Figure 5. Let zl and zh

be the z-coordinates of these two points, respectively.

Then we get a local z-scaling factor
zr−zg

zh−zl
. If the

same scaling factor was applied to all directions dur-

ing manual coarse registration, z-scaling factor should

be s =
√

l1,1 · l2,2 − l1,2 · l2,1. We allow a small devia-

tion by considering all local scaling factors within the

interval [s− 0.2,s+ 0.2]. To avoid outliers, we com-

pute the median value zs of these feasible local scal-

ing factors. Using zs we determine the z-translation

value zt as the median of all local translation values

zg − zl · zs. Then we finally align the cloud with the

city model by multiplying its points with

T−1ZADT, Z :=







1 0 0 0

0 1 0 0

0 0 zs 0

0 0 0 zt






.

Figure 7: Perspective projection of video frame areas onto
CityGML walls

Figure 8: A city model is drawn onto a video frame us-
ing the frame’s SfM camera transformation and estimated
camera projection. The upper picture is based on a coarse
manual alignment between SfM point cloud and UTM coor-
dinate system. The second picture shows optimized align-
ment.

After aligning the point cloud with the city model,

we can match model walls with areas in video frames

or orthogonally project points to walls, see Figures 6

and 7. Fortunately, the SfM tool provides camera pa-

rameters and, in a bundle output file, for each frame

k ∈ {1, . . . ,n} a translation vector~tk ∈ R
3 and a rota-

tion matrix Rk ∈ R
3×3 that together define a transfor-

mation Ck of the original, non-aligned photogrammet-

ric cloud into the frame’s camera coordinate system:

Ck :=

(

Rk ~tk
(0,0,0) 1

)

.

After applying this mapping, the camera’s position is

the origin and the camera looks into the direction of

6



the negative z-axis. We multiply the photogrammet-

ric point cloud with matrix T−1ZADT to align with

the city model. Thus, the transformation of the city

model into the camera’s coordinate system is given

via matrix Ck(T
−1ZADT )−1 = CkT−1D−1A−1Z−1T .

We can now render the model using camera parame-

ters so that it exactly fits with the camera frame (see

Figure 8 for the UAV city center scenario that is de-

scribed in Section 6). Vice versa, CityGML walls can

be textured either based on the point cloud (Figure 6),

or based on the corresponding textured mesh or based

on single video frames (Figure 7).

6 Results

We apply the algorithm to three different point

clouds. So far, we have used a dense point cloud (now

denoted as St. Anton street) as example. The point

cloud of Knight street (see Figure 9) also is taken

through the front window of a car, but it is much thin-

ner than the one of St. Anton street. The third cloud

(see Figure 10) originates from a UAV video of a city

center. This scenario also allows for alignment by

matching corners, see Figure 2. To visualize transfor-

mations, we worsened coarse manual registration by

shifting the clouds by 4 meters in x- and y-directions,

respectively. Table 1 and Figures 9 and 10 summarize

results of computation.

Precision of the registration corresponds with res-

olution 1/3 meter of the pictures used to detect wall

lines. It can be slightly improved by increasing pic-

tures’ resolution. However, if the resolution is too

high, it becomes difficult to detect walls.

To investigate the limits of our algorithm, we

align sampled model point clouds with transformed

versions of themselves in a local coordinate system.

These small clouds are free of noise and lead to a

high number of correspondences. This increases run-

ning time of our MIP optimization step whereas such

clouds are simple to match for ICP in point-to-plane

mode. For example, our algorithm takes 82 seconds

to (approximately) undo the transformation B−1 (ro-

tations by 0.01 degrees around all axes, scaling factor

0.99 and translation with (−4,−4,4)) applied to the

model cloud of Figure 1. It computes a matrix B̃ that

is a good approximation of ground truth matrix B. In

comparison, ICP in point-to-plane mode3 converges

to a corresponding matrix B̂ in 89 seconds. In this ex-

ample, our algorithm finds 136 candidate pairs of cor-

responding line segments. The single MIP step runs

3Point Cloud Library’s class IterativeClosestPointWith-
Normals is used with parameters TransformationEpsilon =
10−8 and EuclidianFitnessEpsilon = 0.1.

Table 1: Three investigated scenarios:

St. Anton Knight UAV city

street street scenario

number of points 8.593.746 1.995.498 5.017.262

line segments of point cloud 114 71 68

line segments of city model 61 73 338

candidate pairs of line 71 95 56

segments

pairs selected by relaxation 24 24 24

of MIP

pairs selected by MIP 17 20 21

model vertices used for 32 48 33

z-operations

running time pre-processing 14s < 4s < 1s

running time MIP and LP < 1s < 1s < 1s

running time post-processing 15s 6s 2s

67 seconds. If we do not compute the exact solution

of the MIP but use a solution of the relaxed MIP then

overall running time decreases to 14 seconds and the

optimization steps finish in less than a second with

outcome matrix ˜̃B. The overall running time can be

further decreased by limiting the number of RANSAC

plane estimates in the pre-processing step.

Figure 9: Knight street scenario: matching between line
segments, thin point cloud, points projected to model walls

Figure 10: Left: UAV point cloud and points projected to
model walls. Right: matching between line segments

The l2-vector norm is defined via ‖(a1, . . . ,an)‖2

:=
√

a2
1 + · · ·+a2

n, and the l2-matrix (spectral) norm

‖B− B̃‖2 := sup

{

‖(B− B̃) ·~a‖2

‖~a‖2
:~0 6=~a ∈ R

4

}

7



is a measure for the quality of the computed alignment

mapping B̃. Let ~v ∈ R
3 be a point of the cloud and

~e = (e.x,e.y,e.z) ∈R
3 the difference between the cor-

rectly and approximately aligned versions of~v. Then

‖(e.x,e.y,e.z,0)‖2 =
∥

∥

∥
(B− B̃) · (v.x,v.y,v.z,1)⊤

∥

∥

∥

2

≤ ‖B− B̃‖2

√

‖~v‖2
2 +1.

Our non-relaxed algorithm aligns best with ‖B −
B̃‖2 ≈ 0.1407 in the current scenario, followed by

the relaxed version (‖B− ˜̃B‖2 ≈ 0.2069) and by ICP

(‖B− B̂‖2 ≈ 0.288).

7 Conclusions

One can utilize the vertical orientation of walls

to reduce the problem of aligning photogrammetric

point clouds with 3D city models to two space di-

mensions if at least two wall segments with linear

independent directions are detected. This might be

given if the scene covers an intersection of streets.

Then, instead of ICP, feature-based alignment using

Linear Programming is a suitable means. Useful re-

sults are obtained by matching line segments of wall

footprints. While the algorithm is designed to align

with city models, it can also be used to align two point

clouds in which walls are dominant. Although not so

fast, the point-to-plane version of ICP also aligns well

with sampled CityGML models.

REFERENCES

Avbelj, J., Iwaszczuk, D., Müller, R., Reinartz, P., and
Stilla, U. (2013). Line-based registration of DSM and
hyperspectral images. ISPRS - International Archives
of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XL-1/W1:13–18.

Boulch, A., de La Gorce, M., and Marlet, R. (2014).
Piecewise-planar 3D reconstruction with edge and
corner regularization. Computer Graphics Formum,
33(5):55–64.

Chen, Y. and Medioni, G. (1992). Object modelling by reg-
istration of multiple range images. Image and Vision
Computing, 10(3):145–155.

Chuang, T.-Y. and Jaw, J.-J. (2015). Automated 3D feature
matching. The Photogrammetric Record, 30(149):8–
29.

Colleu, T., Sourimant, G., and Morin, L. (2008). Au-
tomatic initialization for the registration of GIS and
video data. In Proc. 2008 3DTV Conference: The
True Vision - Capture, Transmission and Display of
3D Video, pages 49–52, Washington, DC. IEEE.

Cui, T., Ji, S., Shan, J., Gong, J., and Liu, K. (2017). Line-
based registration of panoramic images and lidar point
clouds for mobile mapping. Sensors, 17(1).

Gröger, G., Kolbe, T. H., Nagel, C., and Häfele, K. H.
(2012). OpenGIS City Geography Markup Language
(CityGML) Encoding Standard. Version 2.0.0. Open
Geospatial Consortium.

Holz, D., Ichim, A. E., Tombari, F., Rusu, R. B., and
Behnke, S. (2015). Registration with the point cloud
library: A modular framework for aligning in 3-D.
IEEE Robotics Automation Magazine, 22(4):110–124.

Li, W., Li, X., Bian, Y., and Zhao, H. (2012). Multiple view
point cloud registration based on 3D lines. In Proc.
International Conference on Image Processing, Com-
puter Vision, and Pattern Recognition (IPCV), pages
1–5.

Ma, Y., Guo, Y., Zhao, J., Lu, M., Zhang, J., and Wan, J.
(2016). Fast and accurate registration of structured
point clouds with small overlaps. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 643–651.

Magnusson, M., Nüchter, A., Lörken, C., Lilienthal, A. J.,
and Hertzberg, J. (2009). Evaluation of 3D regis-
tration reliability and speed — a comparison of ICP
and NDT. In Proc. IEEE International Conference on
Robotics and Automation (ICRA), pages 3907–3912,
Washington, DC. IEEE.

Maiseli, B., Gu, Y., and Gao, H. (2017). Recent devel-
opments and trends in point set registration methods.
Journal of Visual Communication and Image Repre-
sentation, 46:95–106.

Makhorin, A. (2009). The GNU Linear Programming Kit
(GLPK). Free Software Foundation, Boston, MA.

Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants of
the ICP algorithm. In Proc. Third International Con-
ference on 3-D Digital Imaging and Modeling, pages
145–152.

Sakakubara, S., Kounoike, Y., Shinano, Y., and Shimizu,
I. (2007). Automatic range image registration using
mixed integer linear programming. In Yagi, Y., Kang,
S. B., Kweon, I. S., and Zha, H., editors, Proc. 8th
Asian Conference on Computer Vision, Tokyo 2007,
Part II, pages 424–434, Berlin. Springer.

Tam, G. K., Cheng, Z.-Q., Lai, Y.-K., Langbein, F. C.,
Liu, Y., Marshall, D., Martin, R. R., Sun, X.-F.,
and Rosin, P. L. (2013). Registration of 3D point
clouds and meshes: A survey from rigid to non-rigid.
IEEE Trans. Visualization and Computer Graphics,
19(7):1–20.

Wang, Y., Moreno-Centeno, E., and Ding, Y. (2017).
Matching misaligned two-resolution metrology data.
IEEE Transactions on Automation Science and Engi-
neering, 14(1):222–237.

Zhao, S. (2006). Hough-domain image registration by
metaheuristics. In Proc. 9th International Conference
on Control, Automation, Robotics and Vision 2006,
pages 1–5.

8


