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Abstract

This paper deals with an inequality for ”negative” norms that can be used to get lower estimates for the

error of a finite element discretization of elliptic partial differential equations. It is well known that, if the error

is measured in negative norms, additional regularity of a differential equation yields higher convergence orders

of finite element methods. Additional regularity means that, depending on given data, solutions are smoother

than required by the order of derivatives in a weak formulation of the equation. Obviously, the pointwise error

is not affected by the selection of a norm, but negative norms allow for function values to cancel out each other.

Thus, negative norms tend to ignore noise. The presented inequality extends sharpness of standard error bounds

to such negative norm estimates. It generalizes the ”pollution effect” that has been described by L. B. Wahlbin

in P. G. CIARLET AND J. L. LIONS (EDS): Handbook of Numerical Analysis, II, North-Holland, Amsterdam,

1991.

1 Introduction

Typically, the error of a finite element discretization is

measured in an L2 norm, i.e. its square is integrated

over the the given domain of the equation, then the

square root is taken. For special purposes however, like

superconvergence results, supremum-norm bounds or

local error estimates, it is important to discuss the er-

ror in negative norms (cf. [16, pp. 67] and the liter-

ature cited there). Negative norms are norms of dual

spaces of Sobolev spaces. A Sobolev space of order

s is a function space that contains functions that have

(weak) partial derivatives up to an order s. The norm

of its dual space, the space of bounded linear function-

als that map elements of the Sobolev space to scalars,

is called negative norm. Since it is a norm, it has to be

non-negative. But this norm turns out to behave like a

Sobolev norm with negativ order −s. That is the rea-

son for the strange name.

Nitsche’s trick (cf. [6, p. 141]) yields a full additional

order of convergence when deriving an L2 error bound

from an original finite element error estimate that is

given in a Sobolev norm. By replacing the L2 norm

with ”negative” norms, it is possible to gain further

orders of convergence. The so called “pollution ef-

fect” limits convergence rates and shows that the es-

timate for the one negative norm with the highest con-

vergence rate is best possible. We expand this to the

whole scale of negative norms. Although the outcome

is not surprising, it extends existing results concerning

sharpness of error bounds.

2 Error bounds for finite element dis-

cretization

Let Ω ⊂ R
n be an open domain. We additionally as-

sume the domain to be polygonal so that it can be eas-

ily triangulated in order to define finite element spaces.

W s,2(Ω) denotes the Sobolev space (cf. [1]) of real-

valued functions f which possess weak derivatives

Dα f up to the order s, i.e. |α | ≤ s, belonging to the

Hilbert space L2(Ω) of square integrable functions on

Ω. We use the notations

Dα f (x1, . . . ,xn) =
∂ |α| f (x1, . . . ,xn)

∂x
α1

1 . . .∂x
αn
n

,

|α | :=
n
∑

k=1

αk, αk ∈ N0 := {0,1,2, . . .}.
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The Sobolev space W s,2(Ω) is equipped with the inner

product

( f ,g)s,2,Ω =
∑

|α|≤s

(Dα f ,Dαg)L2(Ω),

( f ,g)L2(Ω) =

∫

Ω

f ·gd(x1, . . . ,xn).

Thus, W s,2(Ω) is a Hilbert space with norm ‖ f‖s,2,Ω =
√

( f , f )s,2,Ω. To take care of boundary conditions, we

denote W
1,2
0 (Ω) as the closure of C∞

00(Ω) in W 1,2(Ω),
where C∞

00(Ω) is the set of infinitely often differ-

entiable functions with compact support in Ω. That

means that functions in W
1,2
0 (Ω) can be regarded as

zero on the boundary of Ω.

Finite element methods are discretizations of differen-

tial equations that are posed as weak problems. One

derives a weak problem from a differential equation,

given as a boundary value problem, by multiplying the

equation with test functions and then by integrating

the products using partial integration. We consider the

weak problem to find a solution u ∈ W
1,2
0 (Ω) satisfy-

ing

a(u,w) = f ∗(w) for all w ∈W
1,2
0 (Ω), (1)

where a(·, ·) is a bounded, elliptic bilinear form, i.e.

|a(u,w)| ≤C‖u‖1,2,Ω‖w‖1,2,Ω, a(u,u)≥ c‖u‖2
1,2,Ω

for all u,w∈W
1,2
0 (Ω), and f ∗ is a bounded linear func-

tional on W 1,2(Ω), i.e. f ∗ ∈W 1,2(Ω)∗. For example, a

typical choice for a(u,w) would be

∑

|α|,|β |≤1

∫

Ω

aα,β (x1, . . . ,xn)(D
αu(x1, . . . ,xn))·

· (Dβ w(x1, . . . ,xn))d(x1, . . . ,xn). (2)

We assume that the coefficient functions aα,β are es-

sentially bounded and Lipschitz continuous for |α | =
|β | = 1. Also, they have to be chosen such that a(·, ·)
becomes elliptic.

The theorem of Lax and Milgram (cf. [4, p. 62]) states

that there is a unique solution u for each f ∗. If the

functional is given by f ∗(w) := ( f ,w)L2(Ω) with f ∈

W ν ,2(Ω), ν ∈ N0, then under reasonable conditions

on a(·, ·) and on the boundary of Ω, elliptic regularity

additionally implies u ∈ W ν+2,2(Ω) (cf. [11, p. 200],

[8, p. 187] or [11, p. 197], see for example [7, p. 160]

for convex polygonal domains in connection with the

Laplacian).

A finite element discretization computes unique ap-

proximate solutions uh that belong to finite element

subspaces Vh ⊂W
1,2
0 (Ω) and fulfill

a(uh,wh) = f ∗(wh) for all wh ∈Vh. (3)

Typically, the functions in Vh are continuous piecewise

polynomials defined on a triangulation of a polygo-

nally bounded domain Ω into finite elements. Then of-

ten parameter h ≥ 0 denotes both a lower bound c · h

and an upper bound C ·h for the diameters of finite el-

ements, where C is the diameter of Ω. Here we assume

such bounds for the spaces Vh.

Céa’s lemma allows to estimate the finite element error

by an error of best approximation (cf. [6, p. 113]):

‖u−uh‖1,2,Ω ≤C inf
w∈Vh

‖u−w‖1,2,Ω.

If Vh consists of piecewise polynomials of order r, one

can expect the error to decrease at most like hr depend-

ing on the smoothness of the solution u (Taylor expan-

sion). Nitsche’s trick (cf. [6, p. 141], [2, p. 85]) allows

to gain an additional order of convergence (factor h1)

for a convex domain Ω, if one measures the error in

the L2 norm:

‖u−uh‖L2(Ω) ≤Ch‖u−uh‖1,2,Ω. (4)

This is not surprising, because the diameter of the fi-

nite elements, which is proportional to h, leads to a

factor 1/h when dealing with first derivatives in Vh. If

one changes from W 1,2 to L2 norm, first derivatives are

no longer considered.

By replacing the L2-norm with a ”negative norm”, one

obtains further additional orders of convergence.

Sobolev spaces of negative order are dual spaces

(see [4, p. 40], cf. [1, pp. 62–65]): For ν ∈ N0 :=
{0,1,2, . . .} one defines (1/p+1/q = 1)

W−ν ,p(Ω) := (W ν ,q(Ω))∗.

We are only interested in the case p = q = 2, where

L2(Ω) is continuously embedded in W−ν ,2(Ω) via f ∈
L2(Ω) 7→ ( f , ·)L2(Ω) ∈W−ν ,2(Ω), because

‖ f‖−ν ,2,Ω := ‖( f , ·)L2(Ω)‖−ν ,2,Ω

:= sup
0 6=g∈W ν ,2(Ω)

( f ,g)L2(Ω)

‖g‖ν ,2,Ω

2
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≤ sup
0 6=g∈W ν ,2(Ω)

‖ f‖L2(Ω)‖g‖L2(Ω)

‖g‖ν ,2,Ω
≤ ‖ f‖L2(Ω).

Therefore, we can measure L2 functions in negative

norms ‖ · ‖−ν ,2,Ω. For ν = 0 we can choose g = f to

see that ‖ f‖0,2,Ω = ‖ f‖L2(Ω).

Negative norms naturally occur if one discusses pow-

ers T ν of the solution operator T of the corresponding

elliptic boundary value problem. T maps an inhomo-

geneity f ∈ L2(Ω) to its solution u. Under certain pre-

liminaries, an inner product (g,w)−ν := (T νg,w)L2(Ω)

leads to a norm equivalent to ‖ · ‖−ν ,2,Ω (cf. [15]).

Finite element methods can be formulated as varia-

tional problems. Such problems also occur in methods

for the reconstruction of noised images. A reason is

that they can help to separate oscillating patterns from

pure noise. That makes them interesting when deal-

ing with noised images cf. [12] and the literature cited

there.

It is shown in [4, p. 147], [14, pp. 166] or [16, p. 68] for

0 ≤ ν ≤ r − 1, under the assumption of certain addi-

tional elliptic regularity and approximation properties

of the finite element spaces of piecewise polynomials

of order r, that (cf. (4))

‖u−uh‖−ν ,2,Ω ≤Chν+1‖u−uh‖1,2,Ω. (5)

This estimate is not really surprising. For example,

sup
0 6=w∈L2(Ω)

(u−uh,w)L2(Ω)

‖w‖L2(Ω)

= ‖u−uh‖L2(Ω),

where the supremum is reached for w = u − uh ∈
L2(Ω). If we calculate the supremum over the smaller

set of functions w ∈ W 1,2(Ω) then the value becomes

smaller. It becomes even smaller by dividing through

the larger norm ‖w‖1,2,Ω. Thus, ‖u− uh‖−1,2,Ω might

be significant smaller than ‖u−uh‖L2(Ω).

A proof of (5) (cf. [4, p. 147]) uses the unique solution

uw of the adjoint problem

a(g,uw) = (g,w)L2(Ω) for all g ∈W
1,2
0 (Ω), (6)

where w ∈W ν ,2(Ω) is an arbitrary function that serves

as inhomogeneity. Let (uw)h ∈Vh be the finite element

solution of the corresponding discrete problem

a(gh,(uw)h) = (gh,w) for all gh ∈Vh.

We also note that if u is the weak solution of (1) and uh

its discrete counterpart of (3), then a(u,gh) = a(uh,gh)
for each gh ∈Vh such that

a(u−uh,gh) = 0 for all gh ∈Vh. (7)

By putting this together and remembering that a(·, ·) is

bounded, we get

‖u−uh‖−ν ,2,Ω = sup
0 6=w∈W ν ,2(Ω)

(u−uh,w)L2(Ω)

‖w‖ν ,2,Ω

(6)
= sup

0 6=w∈W ν ,2(Ω)

a(u−uh,uw)

‖w‖ν ,2,Ω

(7)
= sup

0 6=w∈W ν ,2(Ω)

a(u−uh,uw − (uw)h)

‖w‖ν ,2,Ω

≤C‖u−uh‖1,2,Ω sup
0 6=w∈W ν ,2(Ω)

‖uw − (uw)h‖1,2,Ω

‖w‖ν ,2,Ω
.

If the regularity of the problem implies that for w ∈
W ν ,2(Ω) one has uw ∈ W ν+2,2(Ω) with ‖uw‖ν+2,2 ≤
C‖w‖ν ,2, then a typically fulfilled Jackson-type in-

equality ‖uw − (uw)h‖1,2,Ω ≤ Chν+1‖uw‖ν+2,2,Ω im-

plies ‖uw − (uw)h‖1,2,Ω ≤ Chν+1‖w‖ν ,2,Ω, and (5)

holds true.

3 Sharpness of negative norm esti-

mates

The question arises whether estimate (5) is best possi-

ble with regard to the exponent of h. A lower estimate

can be established for symmetric bilinear forms via the

so called pollution effect (cf. [17, p. 425], see [4, Sec-

tion 5.8]). By taking (7) into account, there is

( f ,u−uh)L2(Ω) = a(u,u−uh) = a(u−uh,u)

= a(u−uh,u−uh) ≥ c‖u−uh‖
2
1,2,Ω.

If we additionally know about the inhomogeneity f

that f 6= 0 and f ∈W ν ,2(Ω), then

‖u−uh‖−ν ,2,Ω = sup
0 6=w∈W ν ,2(Ω)

(u−uh,w)L2(Ω)

‖w‖ν ,2,Ω

≥
(u−uh, f )L2(Ω)

‖ f‖ν ,2,Ω

≥ c
‖u−uh‖

2
1,2,Ω

‖ f‖ν ,2,Ω
.

3



Goebbels: Inequality for Negative Norms Technical Report 2015-02

This implies ‖u−uh‖−ν ,2,Ω 6= o(‖u−uh‖
2
1,2,Ω). If ‖u−

uh‖1,2,Ω behaves like hr, then ‖u−uh‖−ν ,2,Ω 6= o(h2r)
showing the sharpness of (5) for ν = r−1.

The aim of this paper is to also discuss the values ν ∈
{1,2, . . . ,r−2}. This will be done in equation (9) with

the following lemma.

Lemma 1 Let Ω ⊂ R
n be an open, bounded domain

with a Lipschitz boundary (that is given for a polygo-

nal domain), 0 6= f ∈W 1,2(Ω) and ν ∈ N. Then there

exists a constant c > 0, independent of f , such that

‖ f‖−ν ,2,Ω ≥ c‖ f‖1+ν
L2(Ω)

/‖ f‖ν
1,2,Ω. (8)

Before we prove the lemma, we apply it to the fi-

nite element error. In [13, pp. 174], [9, p. 91] (cf. [10])

counter examples uω ∈ W
1,2
0 (Ω)∩W 2,2(Ω) are con-

structed with the help of a quantitative resonance prin-

ciple. The examples show – not surprisingly – that

well-known error estimates for finite element meth-

ods are indeed best possible but also can be extended

to optimal error bounds in terms of moduli of con-

tinuity. The lengthy construction requires an open,

polygonal domain Ω, a bilinear form (2) with func-

tions aα,β that, for β = 1, are continuously differ-

entiable on the closure of Ω, and an inhomogeneity

f ∗ω = ( fω , ·)L2(Ω). Finite element spaces Vh are con-

structed from n-simplexes. Then the finite element er-

ror uω − (uω)h fulfills

‖uω − (uω)h‖1,2,Ω ≤ Chω(hr−1),

‖uω − (uω)h‖L2(Ω) ≥ ch2ω(hr−1),

where ω is an abstract modulus of continuity, i.e. a

function continuous on [0,∞) such that 0 = ω(0) <
ω(δ1) ≤ ω(δ1 + δ2) ≤ ω(δ1)+ω(δ2), for 0 < δ1,δ2.

The smoothness of the counter examples can be mea-

sured with moduli of continuity that behave like these

abstract moduli of continuity. The counter examples

belong to certain Lipschitz classes if ω(δ ) = δ γ for

some 0 < γ ≤ 1.

From this result we immediately conclude sharpness

for 0 ≤ ν ≤ r−1 with (5) and Lemma 1

‖uω − (uω)h‖−ν ,2,Ω ≤ C1hν+1‖uω − (uω)h‖1,2,Ω

≤ C2hν+2ω(hr−1),

‖uω − (uω)h‖−ν ,2,Ω ≥ c
[h2ω(hr−1)]1+ν

(hω(hr−1))ν

= chν+2ω(hr−1). (9)

The rest of the paper is concerned with the proof of

Lemma 1. We need to interpret Sobolev spaces as in-

terpolation spaces using the real interpolation method.

To this end, let X and U be Banach spaces, equipped

with norms ‖·‖X and ‖·‖U such that U is continuously

embedded in X . Then the K-functional is defined for

δ > 0 and f ∈ X as

K(δ , f ,X ,U) = K(δ , f ,(X ,‖ · ‖X),(U,‖ · ‖U))

:= inf
w∈U

[‖ f −w‖X +δ‖w‖U ].

For 0 < Θ < 1 let (cf. [5, p. 168])

‖ f‖[X ,U ]Θ,2
=

(∫ ∞

0

t−2ΘK(t, f ,X ,U)2 dt

t

)1/2

. (10)

Then [X ,U ]Θ,2 := { f ∈ X : ‖ f‖[X ,U ]Θ,2
< ∞} is a

Banach space with norm ‖ · ‖[X ,U ]Θ,2
. Especially

for 0 6= f ∈ U there is K(δ , f ,X ,U) ≤ ‖ f‖X and

K(δ , f ,X ,U) ≤ δ‖ f‖U . This yields the well known

norm estimate

‖ f‖[X ,U ]Θ,2
≤

(

∫ ‖ f‖X/‖ f‖U

0

t−2Θt2‖ f‖2
U

dt

t

+

∫ ∞

‖ f‖X/‖ f‖U

t−2Θ‖ f‖2
X

dt

t

) 1
2

=
‖ f‖1−Θ

X ‖ f‖Θ
U

√

2Θ(1−Θ)

or

‖ f‖X ≥

[

√

2Θ(1−Θ)
‖ f‖[X ,U ]Θ,2

‖ f‖Θ
U

]

1
1−Θ

. (11)

Let X = (W ν+1,2(Ω))∗ be the dual space of W ν+1,2(Ω)
equipped with norm ‖ · ‖−ν−1,2,Ω. As a subspace of X

we choose U = (W ν−1,2(Ω))∗ with norm ‖ ·‖−ν+1,2,Ω.

Then for f ∈ L2(Ω) and Θ = 1/2

‖ f‖−ν−1,2,Ω ≥ c





‖ f‖[(W ν+1,2Ω)∗,(W ν−1,2Ω)∗] 1
2
,2

‖ f‖
1
2

−ν+1,2,Ω





2

.

(12)

The main area of applications for interpolation spaces

are Sobolev spaces. Indeed, for s1,s2 ∈N0, s1 < s2, one

can show for domains with Lipschitz boundary (cf. [4,

Section 14.2])

[W s1,2(Ω),W s2,2(Ω)]Θ,2 =W (1−Θ)s1+Θs2,2(Ω), (13)

where norm of interpolation space and Sobolev norm

are equivalent. To estimate the norm of dual space in-

terpolation in (12), we cite the duality theorem from

4
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[3, p. 54]: Let U ⊂ X be continuously embedded and

dense in X . Then for 0 < Θ < 1 there is

([X ,U ]Θ,2)
∗ = [U∗,X∗]1−Θ,2

with equivalent norms. Please note that in [3] a slightly

different definition of the K-functional is used, where

U does not have to be a subset of X and where

K(t, f ,X ,U) = tK( 1
t
, f ,U,X). Thus, substitution of

1/t in (10) yields the presented form of the duality the-

orem.

With X =W ν−1,2(Ω), U =W ν+1,2(Ω), and Θ = 1
2

we

get

‖ f‖[(W ν+1,2(Ω))∗,(W ν−1,2(Ω))∗] 1
2
,2

≥ c‖ f‖([W ν−1,2(Ω),W ν+1,2(Ω)] 1
2
,2
)∗ .

Now we can use the representation (13) of Sobolev

spaces as interpolation spaces and get for s1 = ν − 1

and s2 = ν +1:

‖ f‖[(W ν+1,2(Ω))∗,(W ν−1,2(Ω))∗] 1
2
,2
≥ c‖ f‖(W ν ,2(Ω))∗

= c‖ f‖−ν ,2,Ω.

Therefore, (12) becomes

‖ f‖−ν−1,2,Ω ≥ c‖ f‖2
−ν ,2,Ω/‖ f‖−ν+1,2,Ω.

We use the inequality recursively. To this end, let aν :=
‖ f‖−ν ,2,Ω:

aν+1 ≥ c
a2

ν

aν−1

≥ c3
a3

ν−1

a2
ν−2

≥ c6 a4
ν−2

a3
ν−3

≥ . . . ,

Thus, we find

‖ f‖−ν−1,2,Ω ≥ c‖ f‖1+ν
−1,2,Ω/‖ f‖ν

0,2,Ω. (14)

In Lemma 1 we assume that 0 6= f ∈ W 1,2(Ω). With

this additional prerequisite, we notice for ν = 1

‖ f‖−1,2,Ω ≥
( f , f )L2(Ω)

‖ f‖1,2,Ω
=

‖ f‖2
L2(Ω)

‖ f‖1,2,Ω
.

This is (8) for ν = 1 and, when used in (14), it also

shows (8) for ν > 1.

The result can also be obtained by interpolation

between Sobolev spaces and their dual spaces. If

one chooses X = W−ν ,2(Ω) = (W ν ,2(Ω))∗, and U =
W 1,2(Ω), then estimate (8) follows by (11) and [4,

Theorem 14.2.7, p. 342] that implies [X ,U ]Θ,2 =
L2(Ω) for Θ = ν/(1+ν):

‖ f‖−ν ,2,Ω ≥ c

(

‖ f‖L2(Ω)

‖ f‖Θ
1,2,Ω

) 1
1−Θ

= c





‖ f‖L2(Ω)

‖ f‖
ν/(1+ν)
1,2,Ω





1+ν

.

4 Conclusion

Additional convergence rates occur, if finite element

errors are measured in negative norms. These addi-

tional rates originate from the regularity of the dif-

ferential equation. They are more or less independent

of the smoothness of a given solution. On the other

hand, there are known counter examples that show

that bounds for the L2 or W 1,2 error are best possible.

These estimates depend on the smoothness of a solu-

tion. By combining both aspects, we have shown that

the counter examples also directly prove sharpness of

negative norm error bounds, i.e., additional speedup of

convergence rates can not be achieved.
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