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Abstract: Dynamic Vision Sensors are neuromorphic inspired cameras with pixels that operate independently and asyn-
chronously from each other triggered by illumination changes within the scene. The output of these sensors
is a stream with a sparse spatial but high temporal representation of triggered events occurring at a variable
rate. Many prior approaches convert the stream into other representations, such as classic 2D frames, to adapt
known computer vision techniques. However, the sensor output is natively and directly interpretable as a 3D
space-time event cloud without this lossy conversion. Therefore, we propose the processing utilizing 3D point
cloud approaches.
We provide an evaluation of different deep neural network structures for semantic segmentation of these 3D
space-time point clouds, based on PointNet++(Qi et al., 2017b) and three published successor variants. This
evaluation on a publicly available dataset includes experiments in terms of different data preprocessing, the
optimization of network meta-parameters and a comparison to the results obtained by a 2D frame-conversion
based CNN-baseline. In summary, the 3D-based processing achieves better results in terms of quality, network
size and required runtime.

1 INTRODUCTION

Dynamic Vision Sensors (DVS) are biologically-
inspired chips, originating from the research field of
neuromorphic engineering, that have a fundamentally
different output paradigm compared to classical im-
agers. These classical CCD or CMOS sensors are typ-
ically operating at a fixed output speed (frames per
second) independent of the captured scene. In con-
trast, a DVS which is also called silicon retina, cap-
tures the scene in terms of changes rather than record-
ing the entire scene at regular intervals.

The pixels of a DVS work independently and
asynchronously from each other and are triggered
by local brightness changes above a defined thresh-
old (Gallego et al., 2020). This leads to a data-
driven output at a highly variable datarate, depend-
ing on the changes in the scene. An activation of one
DVS-pixel is called an “event” and encodes its posi-
tion in the pixel array (x,y), a highly accurate times-
tamp of triggering t and the polarity p indicating the
sign of brightness change. Dynamic Vision Sensors
offer several positive features compared to conven-

tional cameras, such as high temporal resolution, high
dynamic range, low power consumption and a non-
redundant output (Gallego et al., 2020). These sensor
properties provide an interesting opportunity to use
DVSs in outdoor measurement scenarios.

In this work, we address the challenges arising for
the generation of an event-wise semantic segmenta-
tion for DVS sensor data based on recordings in such
an outdoor scenario. For this purpose, the publicly
available DVS-OUTLAB (Bolten et al., 2021) dataset
is utilized. This dataset contains recordings of a long-
time monitoring of an urban public area including
multi-class labels. The data is challenging as it in-
cludes objects at different scales and artifacts due to
sensor noise and environmental influences.

The DVS output paradigm leads to the fact that
long-established computer vision methods are not di-
rectly applicable to the provided event stream. To
avoid the common conversion of the event stream
into classical 2D frames, we propose analogously to
(Wang et al., 2019) the use of 3D point cloud based
deep learning networks. We do this on the belief that
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frame encodings only insufficiently preserve the in-
herent sensor properties. We summarize our main
contributions, extending previous work like (Wang
et al., 2019), as follows:

• analytical and quantitative comparison of differ-
ent input and network parameters for a 3D Point-
Net++ (Qi et al., 2017b) based semantic event
stream segmentation

• the extension of this analysis to three enhanced
point cloud based network structures, which try to
improve the plain PointNet++

• the comparison of the achieved results utilizing
these 3D point cloud deep neural network struc-
tures to an event-to-frame based 2D-CNN base-
line in terms of quality and runtime.

Furthermore, the exact network configurations of
the trained models as well as pre-trained weights and
other supplemental material is available at http://dnt.
kr.hsnr.de/DVS-3DSemSeg/ to support further devel-
opments and comparisons.

The rest of this paper is structured as follows.
Section 2 summarizes related work and their concept
of used event encoding. A description of the evalu-
ated network structures follows in Section 3. Section
4 describes the used processing pipelines in detail,
presents the obtained results and provides a compar-
ison of the results. Finally, a short summary is given
in Section 5.

2 RELATED WORK

In many event-based processing applications the
event stream is transformed into alternative represen-
tations (Gallego et al., 2020). Many of these applica-
tions use a conversion of the event stream into clas-
sic 2D frames, as this is a simple way of conversion
that also allows the use of established computer vi-
sion techniques. However, this conversion is gener-
ally also associated with a loss of information (e.g.
the dense time resolution) of the stream. Recently,
there is a tendency towards graph- or point-cloud-
based methods noticeable, which try to minimize this
information loss in the event encoding.

Frame-based Conversion Approaches

Common techniques for generating frames from DVS
event streams are based on considering (a) a fixed
number of events or (b) the selection of a time window
of fixed length. Depending on the focus of the appli-
cation, different encoding rules are used, which try
to preserve different aspects of the underlying event

stream. Usually, the frames generated in this way are
then analyzed using well-known 2D network struc-
tures and computer vision techniques.

For example, in (Chen et al., 2019a) three dif-
ferent frame encodings are presented, each of which
is intended to represent another characteristic of the
data stream like the event frequency, timestamp in-
formation or time-continuous aspects. These frames,
as well as composited multi-channel combinations of
them, are subsequently processed by a 2D object de-
tection approach. In (Wan et al., 2021) a new frame
encoding called “neighborhood suppression time sur-
face” is introduced to address issues related to ar-
eas with highly different event densities, whereas in
(Jiang et al., 2019) the special DAVIS sensor prop-
erty of being able to record classical intensity im-
ages in combination with derived event-frame encod-
ings is exploited. All approaches mentioned here
are subsequently based on the use of the well known
YOLO (Redmon et al., 2016) based 2D object detec-
tor framework.

In (Damien. et al., 2019) three frames are gen-
erated by accumulating the events in different time
windows with lengths of 40ms, 100ms and 200ms to
be able to detect objects with different speeds. These
frames are subsequently processed in parallel by a
SSD and Faster-RCNN (Ren et al., 2017) based pro-
cessing pipeline.

Graph-based Processing

Using graphs the spatio-temporal relations between
the events can be described without leaving the asyn-
chronicity and sparsity of the events. In (Zhou et al.,
2020), all events are mapped into an image before
the graph is created. The 2D graph derived from the
image is then converted into a 3D graph for further
processing. However, this initialization is very time-
consuming. In (Bi et al., 2020), a 3D graph is built
directly. For saving computation time, the complete
event stream is divided into short temporal sections
so that only few events are considered for the respec-
tive graph construction. Different filtering algorithms
are used in (Bi et al., 2019; Chen et al., 2020; Wang
et al., 2021) for substantial event reduction prior to
their analysis. Compared to applications such as ges-
ture or gait classification, our data contains artifacts
from the environment (such as rain) and the size of
objects varied largely. Hence, it was difficult to de-
cide which events to remove and we did not consider
these approaches further.
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Point-Cloud based Processing

In contrast to the previously mentioned approaches,
the event stream can also be considered as an un-
ordered point cloud. Since each event is described
at least by its (x,y) coordinate and the timestamp
t, a 3D space-time event cloud is created automati-
cally without any further processing steps. The dense
time information is preserved in this interpretation
and converted into geometric information. Subse-
quently, network architectures specifically designed
for unordered point clouds can be used for process-
ing. In (Wang et al., 2019), PointNet and PointNet++
are first applied on event streams to classify hand ges-
tures, utilizing a rolling buffer mechanism to the event
stream. The data in the buffer is then down sampled
for classification. A special feature is, that previous
classification results are used in deciding the current
classification by continuous averaging. In contrast to
(Wang et al., 2019), we use PointNet++ for seman-
tic segmentation. As classification here occurs at the
event level, the idea of the sliding window cannot be
adopted.

3 PROPOSED METHODS

In the following, the basic concepts of the evaluated
3D point cloud networks, as well as the applied 2D-
CNN comparison method are outlined.

PointNet++ Hierarchical feature learning (Qi et al.,
2017b)
PointNet++ builds upon the PointNet (Qi et al.,
2017a) framework by the same authors, which
was the first neural network to be successfully di-
rectly applied to point clouds. First of all, it uses
max-pooling as a symmetric function to make the
network invariant towards input point ordering.
The MLPs used for feature extraction are shared,
resulting in a relatively small network. After ex-
tracting geometric features, an MLP is trained for
either classification or segmentation.
PointNet++ expands the network by hierarchical
processing. It recursively applies Farthest Point
Sampling (FPS) to select representative points to-
gether with small PointNet feature extractors ap-
plied on the local neighborhood of each represen-
tative point (Set Abstraction (SA) Layer), which
helps capturing not only global geometric features
but also neighborhood information. Due to the
consecutive sampling, an interpolation is needed
to produce point-wise features for segmentation
(Feature Propagation (FP) Layer).

The following networks aim to utilize the relation-
ships (e.g. distances, directions) of the points in-
stead of processing each point independently.

A-CNN Annularly Convolutional Neural Network
(Komarichev et al., 2019)
The main concept of A-CNN is to apply a con-
volution to the point clouds, leveraging their re-
lationships. Therefore, a method for ordering the
points is needed. The authors project every point
inside a local neighborhood into an approximated
tangential plane at the representative point. In the
plane, angles can be calculated and used for or-
dering. Then, a one-dimensional convolution can
be applied.

LSANet Feature Learning by Local Spatial Aware
Layers (Chen et al., 2019b)
In LSANet, the process of abstraction and lo-
cal feature learning is accompanied by a paral-
lel branch which learns so called spatial distribu-
tion weights from the coordinates of all points in
a local neighborhood. These implement the con-
cept of attention in neural networks, which means
that some parts of the input are considered to be
more important than others. The attention mask
is multiplied element-wise with the features. In
LSANet, the attention weights are based on the
coordinates, thus on the geometric properties of a
local region, which should enable the network to
better learn details of the structures.

SpiderCNN Parameterized Convolutional Filters
(Xu et al., 2018)
The authors of SpiderCNN do not try to order the
point cloud like in A-CNN. Instead, they adapt the
filter to support unordered input. In classical dis-
crete convolution, only discrete weights for each
position, defined by the kernel size, are needed.
The positions of the neighboring points are not
known in point clouds, so instead of defining dis-
crete weights, a function is used that calculates a
weight based on the coordinates of a point. Dur-
ing the learning phase parameters of the function
generating the weights are learned instead of the
weights themselves. The structure differs from
PointNet++, as the point cloud is not sampled and
therefore no interpolation is needed.

PointNet++ was selected because it represents the
pioneering fundament work for the direct application
of neural networks to point clouds and many other
methods use it as a basis (compare to (Guo et al.,
2021) for a comprehensive method review). The se-
lected further methods were chosen because (a) they
each aim at an improvement compared to the vanilla



PointNet++ and (b) their reference implementations
are also freely available.

Frame-based Baseline as Comparison

As a baseline comparison of the afore-mentioned 3D
point cloud processing networks we also evaluated a
traditional 2D convolutional neural network (CNN)
approach applied on event-frame encodings generated
by means of DVS-stream to frame conversion.

For further processing and fair comparison a
pixel-precise labeling is required on these event-
frames (compare to following section 4.3). Estab-
lished state-of-the-art CNN structures such as U-Net
(Ronneberger et al., 2015) or Mask-R-CNN (He et al.,
2017) are well suited methods for generating this se-
mantic frame segmentation.

However, several comparative studies have found
that Mask-R-CNN is able to learn a better and more
robust prediction. This has been shown in medical
image processing, which is the original application
domain of U-Net, as detailed in (Alfaro et al., 2019;
Vuola et al., 2019; Durkee et al., 2021) - but also for
other application domains (Zhao et al., 2018; Quoc
et al., 2020).

Therefore, we utilized a Mask-R-CNN structure
for the performed comparison in this work. The pre-
dicted object masks are subsequently considered on
the level of a semantic segmentation.

4 EXPERIMENTS

We first briefly introduce the dataset used, followed
by a detailed description of the respective 3D or 2D
processing pipelines. This is followed by the quantita-
tive analysis of the obtained results, which is divided
into multiple parts: (a) the optimization of the base
PointNet++ network in terms of input and network
parameters, (b) the evaluation of 3D PointNet++ suc-
cessor network variants and (c) the comparison of the
obtained results including the 2D frame-based base-
line.

4.1 Dataset

In contrast to the long-established frame-based com-
puter vision, the set of publicly available datasets is
smaller in the event-based vision field. This becomes
even more noticeable focusing on a specific applica-
tion domain, such as long-time monitoring scenarios.

Related to the development of advanced vehicle
driver-assistance systems larger event-based monitor-
ing datasets are available. The datasets DDD17 (Bi-

(a)
PERSON

(b) DOG (c)
BICYCLE

(d)
SPORTS-

BALL

(e) BIRD

(f) INSECT (g) TREE
CROWN

(h) TREE
SHADOW

(i) RAIN (j) BACK-
GROUND

Figure 1: False-color label examples of included classes
in DVS-OUTLAB (projected from 60ms event-stream snip-
pets into 2D frame, modified from (Bolten et al., 2021), best
viewed in color)

nas et al., 2017) and DDD20 (Hu et al., 2020) can
be listed as examples. Despite the fact that these
datasets are composed of many hours of real-world
DVS recordings, these datasets cannot directly be
used for the purpose of semantic segmentation due to
the lack of appropriate semantic labeling. The GEN1
dataset (de Tournemire et al., 2020) also provides
recordings in the automotive application domain. In
this case, object annotations are given for the two
classes person and car. However, these annotations
were carried out in the form of bounding boxes and
not on the level of a semantic segmentation.

Miao et al. offer with (Miao et al., 2019) another
dataset addressing a related scenario of pedestrian de-
tection. However, this dataset consists of only 12
short recordings with an average length of about 30
seconds and furthermore offering only bounding-box
labels for the two classes of background and person.
Hence, a meaningful evaluation of the proposed meth-
ods on these datasets does not appear to be purpose-
ful.

Therefore, the provided semantic labeling from
the DVS-OUTLAB dataset (Bolten et al., 2021) were
selected for this work. This dataset contains DVS
recordings of three CeleX4 neuromorphic sensors
(Guo et al., 2017) form a performed multi-sensor
long-time monitoring of an urban public outdoor
space. These recordings provide a spatial resolution
of 768×512 pixels. Furthermore the DVS-OUTLAB
dataset includes a semantic per-event-labeling for 10
classes in about ≈ 47k regions of interest (see Fig-
ure 1), partitioned in train/test and evaluation sets.
This labeling includes different challenges in the form
of environmental influences and plain sensor back-
ground noise in addition to various objects included
at very different sizes through their perspective dis-
tances.



Figure 2: Patch-of-Interest (PoI): Data selection within
DVS-OUTLAB

4.2 Point Cloud Representations and
Processing Pipeline

Prior work applying 3D point cloud processing tech-
niques on DVS event data processes temporal win-
dows of the stream that includes the entire spatial
resolution of the sensor. In (Wang et al., 2019) the
used DVS128 sensor offers a spatial resolution of
128px× 128px, whereas the CeleX4 sensor record-
ings used in this work have a spatial resolution of
768px× 512px. This considerably higher resolution
leads to a significantly higher number of possible
events per temporal window of the same length.

Over the entire recordings used in (Wang et al.,
2019), the mean event count per 60ms time window
is approximately 3175 events. Considering the DVS-
OUTLAB database used here, this mean count per
60ms time window is about 30 times higher at about
≈ 97k events. Therefore, we decided to apply spatial
patching in addition to the temporal windowing. We
patch the provided stream data into 16 equal patches
of size 192px×128px×60ms, as illustrated in Figure
2. This divide and conquer approach allows to keep
smaller objects and finer structures intact in the subse-
quent filtering and sampling steps to generate the final
point clouds, since the mean event count per patch is
lowered to around 7.5k events.

To generate a point cloud per patch, the follow-
ing preprocessing steps are carried out (compare with
Figure 3a for clarification):

1. Spatio-temporal filtering: As reported by the
DVS-OUTLAB authors, the provided database
contains a high amount of sensor background
noise. Analogously to their analysis of different
spatio-temporal filters (Bolten et al., 2021), we
also apply a filtering in the first processing stage.
The event stream is filtered by removing each
event that is not supported by at least one other
event at the same spatial (x,y) coordinate within
its preceding 10ms. The selection of this filter
is based on the aforementioned filter analysis in
(Bolten et al., 2021), as it reduced background

noise by about 50% while keeping the highest pro-
portion of other class events compared to other
considered spatio-temporal filter variants.

2. Subsampling: A requirement for the application
of PointNet++ and the other 3D network variants
is that the event count given as input must be
constant. Hence, a uniform random subsampling
of the time-filtered events is performed such that
each event has equal probability of appearance.
After applying the previous time filtering step, the
average event count per patch is approximately
4.8k events. Based on this event count evaluation,
n = 4096 events was selected as suitable subsam-
pling target. For patches with fewer events, copies
of randomly selected events are inserted until the
required number is reached. Due to the usage of
max-pooling in the point cloud network process-
ing logic the influence of these duplicates is neg-
ligible.

3. Spatio-Temporal scaling Subsequently, the en-
tire patch of 192px×128px×60ms is shifted into
the coordinate origin so that the upper left bound-
ary point of the patch is located at x = 0,y = 0, t =
0. This leads to the following 3D space time point
cloud definition:

ST
native = {ei = (xi,yi, ti) | (1)

ti ∈ T, i = 1, . . . ,4096,
xi ∈ N : 0≤ xi < 192,
yi ∈ N : 0≤ yi < 128,
ti ∈ R : 0≤ ti < 60.0}

where T is the current temporal event stream win-
dow of 60ms.
In addition, two other variants were considered
within the experiments in which the 3D event co-
ordinates were rescaled accordingly on the time
axis or on all three axes:

ST
tScaled = {ei = (xi,yi, ti) | (2)

ti ∈ T, i = 1, . . . ,4096,
xi ∈ N : 0≤ xi < 192,
yi ∈ N : 0≤ yi < 128,
ti ∈ R : 0≤ ti < 1.0}

ST
cube = {ei = (xi,yi, ti) | (3)

ti ∈ T, i = 1, . . . ,4096,
xi,yi, ti ∈ R :−1≤ xi,yi, ti ≤ 1}

A semantic segmentation is then generated from
these point clouds using the network structures, cre-
ating an event-wise labeling.



(a) 3D based PointCloud processing

(b) 2D frame based CNN processing

Figure 3: Visualization of performed processing steps per Patch-Of-Interest (PoI)

(a) Binary (b) Polarity (c) Frequency (d) MTC

Figure 4: Examples of different frame encodings (best
viewed in color)

4.3 Frame-based Representations and
Processing Pipeline

To ensure fair comparability to the 3D-PointCloud
methods, the frame-based Mask-R-CNN analysis is
based on input data that has been pre-processed in
the same manner. This means that the generated in-
put frame representations originated from the same
DVS event-stream temporal sections and patches
of 192px× 128px× 60ms, which were also spatio-
temporally pre-filtered with the same threshold pa-
rameter of 10ms.

These patches are encoded into frame representa-
tions according to the following description (compare
to examples in Figure 4):

Binary representation

The frame pixel at (x,y) is set to white if a cor-
responding event with the same spatial coordinate
exists in the patched DVS data.

Polarity representation

The frame pixel at (x,y) encodes the polarity of the
latest event that occurred at that spatial position.
The direction of brightness change is encoded by
the following colors: (a) decrease in red, (b) no

change in blue and (c) increase in green.1

Frequency representation
The frame pixel at (x,y) encodes the normalized
count of event occurrences at that spatial position
as proposed by Chen et al. in (Chen et al., 2019a):

σ(n) = 255 ·2 ·
(

1
1+ e−n −0.5

)
(4)

where n denotes the count of occurred events
within the considered time window at the evalu-
ated frame coordinate.
The frequency of occurrence of events within a
time interval represents an indication of whether
the event is noise or a valid event. Assuming that
moving objects trigger a larger number of events,
this encoding leads to a higher weighting of the
edges whereas noise is reduced assuming advan-
tages for subsequent signal-processing.

MTC “Merged-Three-Channel” representation
In this frame representation, which was also pro-
posed by Chen et al. in (Chen et al., 2019a),
different one channel encodings are merged in a
three channel RGB image. This follows the at-
tempt to encode different aspects of the event do-
main and to obtain a large amount of available in-
formation in the encoding. These encodings are
based on:

Frequency (B-channel): This is the integration
of the previously described encoding as one chan-
nel of the merged representation.

1The utilized CeleX4 sensor determines the polarity of
an event based on its transmitted gray value within software,
this can also lead to events with “no brightness” changes.



Surface-Of-Active-Events (SAE, G-channel):
An advantage of the DVS technology is the high
time-resolution of the event stream. The goal of
the SAE-channel encoding is to include this char-
acteristic into the frame representation. Here, the
pixel values are directly dependent on the corre-
sponding timestamp of the events.
This allows that the pixel value and its gradient
includes information about the moving direction
and speed within the event stream.
Leaky-Integrate-And-Fire neuron model (LIF,
R-channel): In this encoding, realizing some
kind of memory surface, each pixel is interpreted
as a neuron with its own membrane potential (MP)
with a fixed decay rate. The triggered events will
increase the corresponding MB and will cause a
firing of the neuron if a threshold is exceeded. The
firing rate determines the pixel value in the frame
encoding.
This encoding allows the inclusion of time-
continuous aspects of the event stream into the
encoding. For a detailed description and imple-
mentation details refer to (Chen et al., 2019a).

Including these aspects in the frame encoding al-
lows for a fair comparison to the 3D methods, since
many characteristics of the events streams are in-
tended to be included.

For each of these frame encodings different Mask-
R-CNNs were trained from scratch with derived 2D
instance labels of the DVS-OUTLAB train-set utiliz-
ing the network implementation of (Abdulla, 2017).

To compare the obtained results with the point
cloud approaches, the 2D label masks generated by
Mask-R-CNN were propagated back to the original
event stream. Every event receives the label of the
corresponding spatial position of the predicted object
mask, thus generating an event-wise labeling (com-
pare to the last illustrated steps in Figure 3b).

4.4 Evaluation Metrics

In the evaluation process, a confusion matrix was built
and standard metrics for segmentation were derived.
Those were Intersection-over-Union, precision, recall
and F1-Score, each computed per-class. For effective
comparison across different setups despite the num-
ber of 10 classes, we derived some summary metrics
from the F1-Scores. Therefor, a weighted-average F1-
Score was computed by weighting the F1-Score of
each class by the number of its samples to account for
class imbalances. As the background-noise class was
particularly dominating, this metric was also com-
puted for merged classes listed below to provide an

x
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(a) Equal weight

x

t

y

(b) Higher weight

x

t

y

(c) Even higher
weight

Figure 5: Visualization of neighborhood by forcing higher
temporal weights in distance calculation

overview on the average performance that is less in-
fluence by this imbalance:

• BACKGROUND

• Objects: PERSON, DOG, BICYCLE and SPORTSBALL

• Environmental influences: RAIN, TREE, INSECT,
BIRD and TREE_SHADOW

4.5 Network Training

The hyper parameters of the networks were left at the
defaults where possible. For the 3D point cloud net-
works this includes the Adam optimizer with a learn-
ing rate of 0.001 and a learning rate decay by 0.7 ev-
ery 200,000 samples. The batch size was set to 16
point clouds. Except for randomly shuffling the input
point order each epoch, no data augmentation meth-
ods were applied. The random shuffle is also impor-
tant for the correct function of the local neighborhood
building process in PointNet++.

In case of the 2D Mask-R-CNN training the de-
fault learning rate was reduced by the factor of 2 to
0.0005 to prevent the explosion of the trained weights,
which especially tends to occurs with smaller batch
sizes, as in our case of three images. For training, the
Keras SGD optimizer was used with a momentum of
0.9 and data augmentation was not applied.

For all experiments the proposed train, validation
and test splits of the DVS-OUTLAB dataset were
used and the training process was carried out on an
NVIDIA Quadro RTX6000 GPU.

4.6 PointNet++ Results

For the main experiments, we determined some key
aspects to test with the PointNet++ architecture and
ranked them according to their expected influence.
These aspects were:

1. Number of layers
2. Number of points sampled in the first SA-layer
3. Variation of spatio-temporal scaling
4. Forcing local neighborhoods to have more or less

temporal components



Table 1: PointNet++ input and network parameter optimiza-
tion results shown as WeightedF1 results
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(a) PointNet++ Layer-experiments

3 Layer 0.952 0.741 0.755 0.9
4 Layer 0.953 0.721 0.763 0.9
5 Layer 0.954 0.737 0.775 0.904
6 Layer 0.955 0.723 0.781 0.905

(b) PointNet++ Point-Count-experiments

n = 512 0.948 0.704 0.732 0.89
n = 1024 0.952 0.741 0.755 0.9
n = 2048 0.958 0.746 0.806 0.914
n = 3072 0.959 0.75 0.805 0.915

(c) PointNet++ Input-Scaling-experiments

ST
cube 0.958 0.746 0.806 0.914

ST
tScaled 0.966 0.817 0.849 0.933

ST
native 0.968 0.806 0.863 0.936

(d) PointNet++ Spatio-Temporal-Scaling-experiments

tweight = 1 0.968 0.806 0.863 0.936
tweight = 3.2 0.966 0.807 0.858 0.934
tweight = 20 0.96 0.788 0.814 0.92

Each aspect was tested separately, i.e. other as-
pects were always fixed. We used a greedy strategy.
Parameters were estimated in the order given above
and then used for computing the best value of the next
parameter in this list.

The number of layers applies to the SA Layers
and equally to the FP Layers. It was chosen from
{3,4,5,6}. Starting point was the default model for
semantic segmentation provided by the authors of
PointNet++, which was adapted to a different num-
ber of layers. The ST

cube scaling was chosen for the
first tests because PointNet++ authors also mentioned
such a normalization in (Qi et al., 2017a) and (Qi
et al., 2017b). We found that the number of layers
has a negligible influence. Therefore, we chose the
smallest and fastest version with 3 layers for subse-
quent experiments.

In the following, the number of points sampled by
FPS in the first SA layer was changed. In addition to
the default of 1024 points, 512, 2048 and 3072 points
were tested. The number of points in the later layers
was not changed. Whereas increasing the point num-
ber from 512 over 1024 to 2048 had a significant in-
fluence, the gain from sampling 3072 points was very

Table 2: Achieved WeightedF1 results by applying 3D net-
work variants and 2D-Mask-R-CNN baseline
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(a) 3D Network variants

PointNet++ 0.966 0.817 0.849 0.933
A-CNN 0.968 0.823 0.862 0.938
LSANet 0.968 0.826 0.857 0.936
SpiderCNN 0.952 0.724 0.735 0.895

(b) Mask-R-CNN @ ResNet-50 Backbone

Binary 0.949 0.821 0.843 0.911
Polarity 0.953 0.844 0.873 0.922
Frequency 0.952 0.828 0.863 0.918
MTC 0.953 0.848 0.87 0.923

(c) Mask-R-CNN @ ResNet-101 Backbone

Binary 0.947 0.816 0.835 0.907
Polarity 0.953 0.842 0.875 0.923
Frequency 0.952 0.833 0.861 0.918
MTC 0.95 0.844 0.862 0.918

small, while almost 50% more time was needed for
inference, so 2048 points were selected for the next
tests.

Next, we tested the other spatio-temporal scalings
(see Section 4.2). Therefore, the radii of the SA layers
were adapted to the longest axis. Due to the shorter
time axis, the full time interval was allowed for neigh-
borhood building. It could be shown that both other
spatio-temporal scalings, applying either the ST

tScaled
or the ST

native scaling, achieve a substantially better
performance than the previous configuration.

The idea of treating the spatial and temporal axes
differently in a radius selection due to different res-
olution was also mentioned in (Bi et al., 2019). It
seemed reasonable to test it on the present dataset,
since the temporal axis was always far shorter than
the spatial axes but had a significantly higher reso-
lution. Thus, the time component received a higher
weight in the Euclidean distance measure. The effect
is shown in Figure 5 in three levels. First, all axes
have the same weight, which leads to a sphere cover-
ing the whole time axis when it is shorter like in the
present dataset. Second and third, the sphere is com-
pressed with respect to the the time axis. Tests have
shown that reducing the time span had almost no in-
fluence at first when setting the time axis weight to
3.2, which leads to equal proportions with respect to
spatial and temporal axes. It reduces the performance



Table 3: Network parameter and runtime comparison with batch size of one (Intel Xeon Gold 6226R CPU, NVIDIA Quadro
RTX6000)

Config #Trainable
Parameters

Config Avg. Inference
time [ms]

(a) 3D PointNet++ network parameters

PointNet++(*, 3L) 437,930
PointNet++(*, 4L) 967,594
PointNet++(*, 5L) 2,418,602
PointNet++(*, 6L) 7,285,162

(b) 3D PointNet++ runtimes

PointNet++(512, 3L) 13.3 +/- 0.5
PointNet++(1024, 3L) 23.1 +/- 0.4
PointNet++(2048, 3L) 43.0 +/- 0.7
PointNet++(3072, 3L) 62.7 +/- 1.2

(c) 3D Network variant parameters

LSANet(*, 3L) 556,810
SpiderCNN(*, 3L) 1,080,798
A-CNN(*, 3L) 2,113,706

(d) 3D Network variant runtimes

LSANet(2048, 3L) 43.5 +/- 1.0
SpiderCNN(*, 3L) 37.6 +/- 0.9
A-CNN(2048, 3L) 41.3 +/- 0.9

(e) Mask-R-CNN 2D-baseline parameters

MRCNN(ResNet50) 44,646,734
MRCNN(ResNet101) 63,664,974

(f) Mask-R-CNN 2D-baseline runtimes

MRCNN(ResNet50) 114.9 +/- 4.2
MRCNN(ResNet101) 127.1 +/- 4.1

when shrinking the time interval too drastically, set-
ting the weight to 20. This supports the initial argu-
ment that keeping all available information is benefi-
cial for algorithm performance.

Table 1 shows the F1-Scores of the aforemen-
tioned experiments for the grouped classes.2 For fur-
ther clarification, qualitative results of the segmen-
tations are given in Figure 6. Here, the processed
Patches-Of-Interest are projected into 2D frames and
the resulting labeling is represented by false colors.

4.7 3D Network Variant Results and
Baseline Comparison

The two network variants A-CNN and LSANet can
both outperform PointNet++ by a slight margin, espe-
cially in the important non-background classes. Con-
sidering the fact that the inference time nearly stayed
the same, they offer good alternatives to the bare
PointNet++ architecture. In contrast, SpiderCNN de-
livers much worse results, pointing out the effective-
ness of the set abstraction architecture of the other ap-
proaches, since SpiderCNN uses a different approach
without sampling and interpolation. Table 2a and 3
summarize the results and runtimes.

The Binary frame encoding achieves the worst re-
sults in the 2D-Mask-R-CNN comparison, regardless
of the utilization of ResNet 50 or 101 as network

2The detailed network configurations and pre-trained
weights are available online. In addition, unweighted per-
class F1 scores are also available.

backbone. This is understandable since this encod-
ing preserves the lowest amount of information. The
3-channel frame encodings Polarity and MTC show
significantly better results for non-background classes
compared to the Frequency encoding (compare to Ta-
ble 2b,c).

The results utilizing Polarity or MTC encodings
are comparable to each other, but are overall worse
than the bare PointNet++ results. It should be noted
that the PointNet++ used for comparison has about
101 or 145 times fewer trainable weights depending
on the used backbone and is up to a factor of ≈ 2.95
times faster at inference (compare to Table 3a,e and
3b,f).

5 CONCLUSION

The conducted experiments and their presented re-
sults clearly reveal that an interpretation of the DVS
event stream in the form of 3D space-time event
clouds is a promising way. The obtained seman-
tic segmentations using Deep Learning based meth-
ods for the processing of unordered 3D point clouds
achieves better results in terms of quality and runtime
compared to a 2D-frame encoded CNN-baseline ap-
proach. This confirms the presumed advantages of
the 3D point cloud representation of the DVS stream,
as this representation results almost natively and pre-
serves the properties of the data stream better than 2D
frame conversion encodings.

However, the point cloud representations with



ei = (xi,yi, ti) used in this work consider just the
spatio-temporal components of the event stream. One
aspect for further research may therefore be the con-
sideration of additional features, such as the event po-
larity, in this representation.

Currently, each patch of the event stream is pro-
cessed independently. As a result, the temporal con-
tinuity at the boundaries of the patches is not prop-
erly considered. Therefore, the extension of point
cloud based processing to include recurrent structures
(Fan and Yang, 2019) or LSTM structures (Min et al.,
2020) is another promising extension.
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