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Abstract: The surveillance of railway tunnel entrances is integral to ensure the security of both people and infrastructure.
Since 24/7 personal surveillance is not economically possible, it falls to automated solutions to ensure that no
persons can intrude unseen. We investigate the use of Dynamic Vision Sensors in fulfilling this task. A
Dynamic Vision Sensor differs from a traditional frame-based camera in that it does not record entire images
at a fixed rate. Instead, each pixel outputs events independently and asynchronously whenever a change
in brightness occurs at that location. We present a dataset recorded over three months at a railway tunnel
entrance, with relevant examples assigned labeled as featuring or not featuring intrusions. Furthermore, we
investigate intrusion detection by using neural networks to perform image classification on images generated
from the event stream using established methods to represent the temporal information in that format. Of the
models tested, MobileNetV2 achieved the best result with a classification accuracy of 99.55% on our dataset
when differentiating between Event Volumes that do or do not contain people.

1 INTRODUCTION

Rail-based transportation systems represent open sys-
tems in which large volumes of passengers or goods
are transported every day. To ensure transporta-
tion, people must have quick and easy access to sta-
tions and trains, resulting in numerous access points
(D’Amore and Tedesco, 2015). For this reason, it is
necessary to ensure a high level of security at these
points using automatic surveillance technology. In
the numerous existing tunnels, for example, it must
be ensured that no person can enter unnoticed, as this
would increase the risk of accidents or disrupt rail
traffic. The motives for unauthorized entry into tun-
nels can be very diverse, e.g. vandalism, aggression
against others, tests of courage, homelessness or sui-
cide plans. If such unauthorized entry is detected by
the surveillance systems, the tunnel must be closed
and manually controlled, causing delays and disrup-
tions to train traffic.

Technical monitoring of tunnel entrances with
conventional cameras is challenging due to highly
variable and extreme lighting conditions such as
trains approaching with their headlights turned on.
In addition, rain, snow and the high speed of trains
can cause turbulence, which can have very different
visual appearances. On the other hand, when using

Fiber Bragg Grating sensors (Catalano et al., 2017),
which have relevant advantages in such environmen-
tal conditions, the classification of the triggering sig-
nal (e.g., distinguishing whether a person or an animal
has stepped on the mat, for example) is a major chal-
lenge. LiDAR sensors have also been tested because
they operate independently of ambient light. As a re-
sult, they provide a three-dimensional point cloud of
the scanned environment. However, the dependence
between the achievable spatial and temporal resolu-
tion is problematic with this technology. A high tem-
poral resolution, such as that needed to identify fast-
moving trains, can only be achieved at a low spatial
resolution, so that smaller objects, such as people,
have only a few scan points in the recorded LiDAR
point cloud. This means that reliable identification
of moving people is not possible, which can lead to
false alarms, as in the case of cameras and floor mats,
but also to missed detections. To avoid false alarms,
intrusion detection often combines multiple technolo-
gies to maximize confidence in the results (Siraj et al.,
2004).

In this paper, we investigate the feasibility of using
event cameras, also called Dynamic Vision Sensors
(DVS), to reduce the false alarm rate and improve the
practicality of automated surveillance. Event cameras
differ from conventional cameras in that they do not
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(a) Example recorded with
the DVS in motion

(b) Example recorded with a
stationary DVS

Figure 1: Comparison of recordings with a moving or sta-
tionary DVS

record images, but only an asynchronous event data
stream in which individual changes in pixel bright-
ness are output independently when they occur. This
allows for a very high temporal resolution in the data.
In addition, the sensors are very sensitive to light, so
they can operate in areas with changing lighting or
in very dark environments such as tunnel entrances,
producing signals that are far less influenced by am-
bient light levels than, for example, traditional RGB
cameras. This makes them particularly suitable for
detecting people at tunnel entrances. To facilitate the
application of event-based vision in this area we pro-
vide:

• An outdoor dataset recorded in a novel setting and
auxiliary sequences with classification labels to
amend the low number of DVS Datasets, espe-
cially high resolution ones, currently available.

• Results of a baseline approach to facilitating intru-
sion detection using image classification on gen-
erated event frames, including scenarios possi-
ble in this context which cannot be recorded di-
rectly due to concerns regarding the actor’s secu-
rity. These were generated by combining multiple
recordings.

1.1 Related Works

A large motivator for utilizing Dynamic Vision Sen-
sors in pedestrian detection is the automotive con-
text. Prophesee, the manufacturer of the DVS used
in recording our dataset, provides two large datasets
in this area. One is the GEN1 dataset (de Tourne-
mire et al., 2020) with manually created bounding
box labels. The other is the higher resolution 1
Megapixel Automotive Detection dataset (Perot et al.,
2020), which is annotated with bounding boxes ex-
tracted from a traditional frame-based RGB record-
ing acquired in parallel. Most of the data in these
datasets are recorded with the DVS in motion. This
leads to immobile objects in the environment gener-
ating many events. This trait creates a significant dif-
ference between the data contained in these datasets
and our use case, as showcased in Figure 1 by com-
paring an event frame from the 1 Megapixel Auto-

motive Detection dataset and our dataset. Addition-
ally, the positioning of the DVS leads to people be-
ing recorded straight on, while surveillance cameras
usually record an overhead view. Empirically, apply-
ing the RED Model for bounding box detection (Perot
et al., 2020) trained on the 1 Megapixel Automotive
Detection Dataset to our data showed that the features
learned on the former do not translate well to our use
case.

(Jiang et al., 2019) explores the combination of
per-pixel confidence scores calculated from DVS sig-
nals and traditional frames for bounding box pedes-
trian detection. This is not possible for us since
we were not able to acquire corresponding frame-
based data. (Miao et al., 2019) provides a small
346 × 260 benchmark dataset featuring 12 clips of
around 30 seconds for bounding box pedestrian detec-
tion in different settings. (Bisulco et al., 2020) inves-
tigates bounding box pedestrian detection on a small
non-public 480× 320 dataset with a focus on band-
width reduction. (Wan et al., 2021) provides a 488-
second bounding box pedestrian detection dataset
with a 346 × 260 pixel resolution recorded in vari-
ous settings and investigates pedestrian detection on
this dataset. (Alonso and Murillo, 2019; Bolten et al.,
2021) provide datasets with semi-automatically gen-
erated semantic segmentation labels featuring pedes-
trians. (Bolten et al., 2023) provides a pedestrian
dataset with instance segmentation labels generated
by recording persons wearing easily differentiated
suits. The lower resolutions and differing scenarios
these datasets were recorded in make them difficult to
apply to our use case. (Iaboni et al., 2023) provides a
70.75min 640× 480 bounding box annotated dataset
of aerial recordings in urban settings, which include
pedestrians. Due to the DVS being drone mounted,
this dataset exhibits similar egomotion issues as the
automotive datasets described above.

In a surveillance context, human intrusion detec-
tion using Dynamic Vision Sensors is investigated in
(Perez-Cutino et al., 2021), obtaining input data with
a drone mounted DVS and detecting persons in two
stages by first detecting moving objects and subse-
quently determining whether they are humans.

2 DATASET

2.1 Event-Based Vision

2.1.1 Dynamic Vision Sensor

Instead of capturing entire frames at a fixed rate, a Dy-
namic Vision Sensor asynchronously reports changes
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in light intensity for each pixel of the pixel array.
For each registered change, it outputs an event E =
(x,y, t, p) where (x,y) are the coordinates at which the
change occurred, t is the time at which the change oc-
curred, and p indicates the direction of the change.
p = 1 indicates that the pixel got brighter, p = 0 in-
dicates that the pixel got darker. The exact values p
takes can differ depending on the sensor used. These
events are output in a continuous stream without a
fixed frame association. Because redundant areas in
which no changes occur do not generate any data, less
data is transmitted than by an equivalent frame cam-
era, especially considering the high temporal resolu-
tion in the order of microseconds.

2.1.2 Event Encoding

Applying neural networks to continuous event
streams requires converting the events to a format
with a fixed size. One way to achieve this is to split the
event stream into temporal bins of a given length and
generating a dense representation of the events in each
bin. We choose the length of the bins T = 50000µs,
resulting in 20 bins per second. The spatial informa-
tion contained in the events is used to determine their
position in the dense representation. There are differ-
ent options for the impact of timestamp t and polarity
p on the dense representation.
Linear Time Surface The dense representation has

the dimensions H ×W ×2, where H is the height
and W is the width of the pixel array the event
stream originates from. Each channel is assigned
to one of the two possible polarities. The value
at each position is assigned according to the latest
occurrence of an event in that position according
to the formula:

T (x,y, p) =
tmax(x,y,p)− t0

T
,

where tmax(x,y,p) is the timestamp of the latest
event with the given polarity p in the position
(x,y), t0 is the timestamp at the beginning of the
current bin and T is the length of a bin. While the
sensor manufacturer’s Metavision SDK (Prophe-
see, 2023) documentation refers to this encoding
as a linear time surface1, this approach is often
referred to as a surface of active events (SAE) in
literature (Wan et al., 2021; Mueggler et al., 2015;
Benosman et al., 2014). For the rest of this paper
the term Time Surface will refer to Linear Time
Surfaces as described here when it appears.

Event Volume An event volume (Zhu et al., 2019)
represents the spatial position of each event in the
1https://docs.prophesee.ai/stable/tutorials/ml/data pro-

cessing/event preprocessing.html

first two dimensions and represents the timestamp
as a combination of the third dimension and value.
The third dimension further subdivides the time
bin into separate micro bins which are split by
event polarity, meaning that the structure essen-
tially consists of separate event volumes for each
polarity. Each event then distributes a contribu-
tion of one between the two closest microbins, so
that the exact distribution of input events could
be reconstructed down to a rounding error if each
voxel is only contributed to by one event. We gen-
erate the event volume with six total micro bins,
three for each polarity.

We perform the encoding using the Metavision
(Prophesee, 2023) implementations of linear time sur-
faces and event volumes.

Due to the artificial lighting at the tunnel entrance,
there is significantly more noise in the recordings than
there is in the staged recordings taken in naturally il-
luminated scenes. The amount of noise also fluctuates
depending on what lighting is turned on at any given
time. In order to suppress this difference, we spatio-
temporally filter out events with no prior events occur-
ring in the 8-point neighborhood within the last 50ms
(Delbruck, 2008).

2.2 Recording Setup

Eleven weeks of event streams were recorded at a
railway tunnel entrance from February 21st 2023 to
May 7th 2023. Additionally, staged material featuring
pedestrians walking in front of the event camera was
recorded in three separate scenes. The tunnel entrance
is a restricted area. Consequently, the only instances
of people appearing in the recordings are occasional
authorized personnel. These instances would not pro-
vide sufficient material for training by themselves. Of
the staged scenes, two were recorded on campus and
one was recorded at the tunnel entrance.

All recordings were performed using Metavision
EVK3 – Gen4.12 Dynamic Vision Sensors by Proph-
esee.

Each recording is taken from a top-down view,
with the camera mounted at a height of 3 m to 4 m
and a downward angle of 15°.

The bulk of the data in this dataset was recorded
at a railway tunnel entrance involved in regular traf-
fic. The DVS was mounted 8 m into the tunnel on the
tunnel wall, facing slightly away from the wall and to-
wards the tunnel entrance. The view close to the wall
onto the boardwalk at the tunnel’s edge is partially
obstructed by a cable tray running below the DVS.

2https://www.prophesee.ai/event-based-evk-3/
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Railway Tunnel Entrances Using Dynamic Vision Sensors. In Proceedings of the 13th International Con-
ference on Pattern Recognition Applications and Methods, ISBN 978-989-758-684-2, ISSN 2184-4313, pages
902-909.

The final version is available online at: http://dx.doi.org/10.5220/0012558600003654

https://docs.prophesee.ai/stable/tutorials/ml/data_processing/event_preprocessing.html
https://docs.prophesee.ai/stable/tutorials/ml/data_processing/event_preprocessing.html
https://www.prophesee.ai/event-based-evk-3/
http://dx.doi.org/10.5220/0012558600003654


DVS

Cable Tray

Boardwalk

Railbed

Figure 2: The setup used to acquire data at the tunnel en-
trance. Not to scale.

The setup is pictured in Figure 2. The DVS at the tun-
nel entrance was fitted with a Tamron M117FM08-RG
objective lens. The lens’ focal length of 8 mm results
in a horizontal Field of View(FOV) of approximately
42° and a vertical FOV of approximately 24°.

Additional examples featuring pedestrians were
recorded on campus with a DVS fitted with a Foctek
CS-5IR objective lens. This lens has a lower focal
length of 5 mm. This results in a horizontal FOV
of about 72°, a vertical FOV of about 40°. For one
recording, the DVS was mounted on a telescope mast
and raised approximately 3 m in order to replicate the
top-down view seen at the tunnel entrance. For a sec-
ond recording the DVS was hung out of a first floor
window and aligned similarly to the setup at the tun-
nel entrance.

2.3 Content of the Dataset

2.3.1 Recorded at the Tunnel Entrance

The recording taken at the tunnel entrance is split into
one hour segments. The recording is interrupted for a
few minutes every two weeks because the hard drive
was exchanged. The location features some flickering
artificial lighting. This causes some noise along the
ground and other objects, such as rails, in the environ-
ment which varies over time depending on the time of
day and what lighting is turned on. An overwhelming
majority of the recordings taken at the tunnel entrance
contains no pedestrians and depicts a small variety of
similar or identical situations. To remedy this class
imbalance, the recordings containing no pedestrians
are manually cut down to relevant examples of dif-
ferent situations. This facilitates an economical use
of computational resources when training and avoids
trained models becoming overly biased towards de-
tecting no pedestrians or overfitting on common situ-
ations.

The staged samples containing People recorded at
the tunnel entrance contain three actors and one dog.
The scenarios include:

• Walking in and out of the tunnel along the board-
walk at the wall the DVS is mounted on

• Walking in and out of the tunnel inside the railbed

• Intermittently stopping while walking through the
railbed, causing very few events to be triggered

• Running around the railbed waving with both
arms in a wide motion

The terminology is explained in Figure 2. The first
three scenarios are chosen because we are focused on
intrusion detection, meaning we are mainly interested
in people entering or exiting the tunnel. The fourth
scenario is included to provide an example of persons
with a different silhouette from normal walking.

Most of the scenarios are recorded with all actors
involved except for the last scenario, in which the dog
and its handler are not involved for reasons of prac-
ticality. The cable tray (see Figure 2) near the wall
the DVS is mounted on results in people occasionally
appearing cut off or being hidden entirely.

There are some events besides the appearance of
persons which cause activity in the event stream:

• The artificial lighting being turned on or off, caus-
ing bursts of events

• Rain and snow

• Passing trains on three visible rails in different
distances

• Reflections on wet floor or rails caused by the
lights of passing trains

• Artificial lighting reflecting on wet floor or rails
caused by rain

• Flying insects

• Birds flying past or landing at the tunnel entrance

• One instance of a deer entering the tunnel

The remaining recordings taken at the tunnel en-
trance mostly consist of nothing happening, meaning
the only events generated are noise, mostly caused by
flickering artificial lights.

2.3.2 Recorded On Campus

The following scenarios were recorded outdoors with
the DVS mounted on a telescope mast. A total of four
actors were involved in creating these recordings.

• Single person walking away from and back to-
wards the camera, repeated by each actor individ-
ually

• Group of three walking away from and back to-
wards the camera fanned out

• Group of three walking away from and back to-
wards the camera in a single file line

• All four actors walking randomly through the
recording area
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(a) Scene containing
pedestrians.

(b) Scene with a passing
train.

(c) Encoding of merged
streams without occlusion.

(d) Encoding of merged
streams with occlusion.

Figure 3: Example of composite frames. Depicted are visu-
alized linear time surfaces. Best viewed in color.

• All four actors walking away from and back to-
wards the camera spread out while stopping inter-
mittently

• Group of two walking away from and back to-
wards the camera

• All four actors walking away from and then back
towards the camera while waving both arms in a
wide motion

The scenarios were selected according to our use case.
Specifically, this means most examples consist of ac-
tors walking towards or away from the camera in a
straight line, since we are investigating surveillance
at a tunnel entrance.

Additional scenarios were recorded with the DVS
hung out of a window in order to include examples of
rounding corners and moving along the wall, which
are relevant in the context of a tunnel entrance, in the
dataset.

2.4 Composite Samples

One situation which could not be recorded directly
was people entering the tunnel while a train was pass-
ing through. Even though there is enough space to
walk on the boardwalk near the tunnel wall in this
situation, doing so is not safe. Due to this concern,
we were not able to create staged recordings of this
situation. However, when trying to detect unautho-
rized entry, this situation cannot be ruled out. Con-
sequently, it must be included in the dataset. To do
this, we generate the examples artificially by combin-
ing the acquired recordings.

The method we use to achieve this is merging the
event streams prior to encoding them into the input
format for the detectors. As the event stream is, bar-
ring technical errors, always sorted by t, the merge it-

self is performed like a merge sort step with the event
streams as input, potentially with an offset applied to
t to merge sections which occur at different times in
their respective recordings. For example, combining
the event streams visualized in Figure 3a and Figure
3b results in Figure 3c.

This method does not account for occlusion. Since
events are, barring noise, only generated at non-
homogenous moving areas, any homogeneous parts
will appear transparent. To remedy this, we classify
one of the event streams to be merged as foreground
and the other as background. After performing noise
filtering on the foreground event stream, we use a
morphological closing to obtain a mask which shows
the approximate occlusion caused by moving fore-
ground objects in the scene. Events covered by the
mask are then removed from the background stream
or ignored while merging. The result is pictured in
Figure 3d. The events occurring behind persons are
removed, but some events erroneously get removed at
concave sections of the person’s contours.

There are some remaining limitations to this
method that have not been solved here. Firstly, the
classification of each event stream as either fore-
ground or background does not allow for three-
dimensional depth. This can be problematic, for ex-
ample when trying to generate recordings featuring
rain or snow, where one would expect some droplets
to fall in front and other droplets to fall behind the
persons or other objects moving through. Secondly,
major lighting changes in either scene often do not
affect the other scene as they should. For example,
when a train passes through with the headlights turned
on, one might expect the passing light to sweep across
nearby persons, generating events. This effect is not
replicated by simply merging the event streams.

2.5 Label Assignment

The recordings are divided into clips and are manu-
ally assigned one of two labels based on frames gen-
erated from the event stream. We choose to frame our
problem as an image classification task instead of an
object detection task because we are only interested in
the presence of persons, not their exact location. Sim-
plifying the problem in this way allows us to focus on
reducing the false positive rate of overall detections
while maintaining the near zero false negative rate of
the existing system. The label People is assigned to
clips featuring People, while the label NoPeople is as-
signed to any other clips.

When dividing into training and validation
datasets, it is important to select completely differ-
ent clips for each. Just selecting generated frames
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randomly from obtained recordings would skew the
results. For example, a detector overfitted on three
consecutive frames would conceivably still perform
well on the middle frame if it was not seen in training
while the remaining two were.

The training dataset contains 20min15s of non-
composite recordings labeled as containing people
which were recorded on campus and 41min10s of
recordings labeled as not containing people which
were recorded on campus and at the tunnel entrance.
Additionally, 1min42s of composite recordings are
generated and added as both the merged bins as ex-
amples containing people and bins generated from the
background only as examples not containing people.
Frames are sampled with a stride according to the
speed of objects in the scene in order to avoid overfit-
ting. Most scenes, including those just featuring hu-
mans, are sampled with a stride of 20, meaning one
bin per second of recording. Scenes featuring trains
are sampled with a stride of five, including composite
scenes. Scenes featuring extremely short-lived events
such as flashes of light are not sampled with a stride,
or, equivalently, are sampled with a stride of one.

The validation dataset contains 9min16s of non-
composite recordings labeled as containing people
recorded at the tunnel entrance and 2min48s of reg-
ular recordings labeled as not containing people. As
was done for the training dataset, 27s of composite
recordings are added as corresponding positive and
negative examples. All examples in the validation
dataset were recorded at the tunnel entrance. No
stride is applied to validation data.

The dataset and other supplementary mate-
rial is available at https://github.com/TuNuKi-
DVS/intrusion-railway-dvs.

3 INTRUSION DETECTION

We use three different neural network architectures
to classify the encoded dense representations of the
event stream as either containing people or not con-
taining people.

3.1 Basic Encoder-Classifier Structure

As a low complexity baseline approach, we consider
the following structure:

• One batch normalization layer

• Three encoder blocks consisting of:

– One 2D convolutional layer with a 3×3 kernel
– One 50% dropout layer
– One 2×2 max pooling layer

• One densely connected layer consisting of ten
nodes

• One densely connected output node
The input shape is 360×640×2 for time surfaces

and 360×640×6 for event volumes.

3.2 MobileNetV2

We investigate the performance of the MobileNetV2
(Sandler et al., 2018) architecture. Being designed
with memory efficiency in mind, examining its per-
formance is useful in looking towards an efficient
final implementation, which is economically rele-
vant considering the full-time surveillance applica-
tion. The weights of the encoder portion are initial-
ized with the ImageNet (Russakovsky et al., 2015)
weights provided by TensorFlow (Abadi et al., 2016).
The classification head is replaced by a two-class
head. Since the input layer expects a three-channel
image a convolutional layer is inserted in front of the
encoder in order to learn a three-channel representa-
tion. The input shape is 360× 640× 2 for time sur-
faces and 360×640×6 for event volumes.

3.3 Yolov8

We investigate the performance of YOLOv8 (Jocher
et al., 2023) on our dataset because it is a state-of-
the-art architecture in frame based image classifica-
tion. In order to use YOLOv8 a three-channel vi-
sual representation of the time surface encoding is
generated using the method provided by Metavision.
This converts the time information previously rep-
resented by the gray tones of each channel to color
values. These images are then used as input to the
yolov8m-cls model for both training and validation.
The weights are initialized to weights pretrained on
the ImageNet dataset. The visualizations are input at
a resolution of 736×736. The change in aspect ratio
is achieved by padding the vertical axis with the vi-
sualization’s background color on both sides, mean-
ing all data in the original image stays intact without
cropping. This is important because the classification
of images in this case can depend entirely on informa-
tion around the edges.

3.4 Results

The results achieved by the models are presented in
Table 1. The metrics are defined as

Accuracy =
T P+T N

T P+T N +FP+FN
, (1)

Precision =
T P

T P+FP
, (2)
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Railway Tunnel Entrances Using Dynamic Vision Sensors. In Proceedings of the 13th International Con-
ference on Pattern Recognition Applications and Methods, ISBN 978-989-758-684-2, ISSN 2184-4313, pages
902-909.

The final version is available online at: http://dx.doi.org/10.5220/0012558600003654

https://github.com/TuNuKi-DVS/intrusion-railway-dvs
https://github.com/TuNuKi-DVS/intrusion-railway-dvs
http://dx.doi.org/10.5220/0012558600003654


Table 1: Performance of each model on the validation dataset.

Model Encoding Accuracy Precision Recall
Basic Time Surface 0.9530 0.9948 0.9158
Basic Event Volume 0.9875 0.9967 0.9795

MobileNetV2 Time Surface 0.9915 0.9876 0.9965
MobileNetV2 Event Volume 0.9955 0.9949 0.9965

Yolov8 Visualization 0.9913 0.9933 0.9901

Recall =
T P

T P+FN
. (3)

TP(true positive) refers to the number of frames
containing people classified correctly, TN(true nega-
tive) refers to the number of frames not containing
people classified correctly, FP(false positive) refers to
the number of frames not containing people falsely
classified as containing people, and FN(false nega-
tive) refers to the number of frames containing people
falsely classified as not containing people.

The best overall results are achieved using Mo-
bileNetV2 on Event Volumes, followed closely by
MobileNetV2 on Time Surfaces and Yolov8 on Time
Surface visualizations. The baseline approach trails
behind in Accuracy on both Time Surfaces and Event
Volumes. This indicates that both MobileNetV2 and
Yolov8 would be suitable candidates for an opera-
tional system. The choice would mostly depend on
other factors such as runtime performance and avail-
able hardware.

4 CONCLUSION

In this paper we have presented a dataset recorded
over several months at a railway tunnel entrance.
While we have investigated the use of this dataset
in the context of intrusion detection, the dataset can
also be of interest regarding the application of DVS in
outdoor settings in general. Additionally, it provides
many recordings of moving railway vehicles.

We have approached the intrusion detection task
as an image classification problem. While this ap-
proach facilitates ease of generating labeled data for
training and validation and simplifies the problem to
compute, it also suffers from drawbacks. One issue
is that the classification output does not provide in-
formation on the location of detected persons within
the image. Depending on the setup of the camera,
this can make it difficult to determine whether the
persons detected are actually in the restricted area or
in an open area but still in frame. It is also possi-
ble that localizing interesting clusters of event prior
to classification and classifying only a corresponding
section of the generated frames may improve classifi-
cation performance. Future works should investigate

the robustness of bounding box or segmentation based
approaches, such as the approach presented in (Perez-
Cutino et al., 2021), investigating how this approach
improves with higher resolution data and how it per-
forms with the large amount of events generated by
passing trains. In addition, the only classes consid-
ered at this stage are ”Persons in Frame” and ”No Per-
sons in Frame” or effectively ”background”. This re-
sults in the detector effectively performing presence
detection, which could be more efficiently achieved
by other types of sensors, such as thermal sensors,
without the need for a neural network. The poten-
tial of the chosen approach lies in further analyzing
the situation, such as differentiating between entry by
humans and entry by animals, and whether entering
animals pose a significant risk of causing an accident.
Realizing this potential will require the collection of
additional data in future works. Additional data col-
lection will also be required to evaluate the general-
izability of the trained detector, since our validation
data were collected exclusively using the setup de-
picted in Figure 2.

Furthermore, the networks we tested in this work
were trained and run on a GPU. Considering that
this is a surveillance application, it is worthwhile to
investigate energy efficiency and reducing the num-
ber of operations performed during inference while
maintaining classification quality and real-time per-
formance in future works.
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