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Abstract: A classification system for analyzing sequences of range-Doppler maps with 

neural networks is presented. The system aims at the detection and classification of 

dangerous or violent scenes in public places. We have installed radar modules inside and 

outside a train station to capture radar data in these scenarios. Recognition experiments 

are performed on these data. Augmentation methods have been developed to artificially 

create additional training data. Recognition results are presented. 

 

1. Introduction 

A radar-based approach is investigated to monitor public places with a high probability that 

people will get into dangerous situations or violent conflicts will occur. We use radar systems 

as an alternative to the visual inspection with cameras. The use of cameras can be considered 

as an invasion of the privacy of people present in public spaces. Moreover, according to the 

German legislation, police units are only allowed to observe such places with cameras when 

there is a high probability that violent activities will occur. Thus, the application of radar 

technology can avoid several problems and difficulties related to data privacy and legislation. 

As an activity of the research project KIRaPol.5G [1], we installed several radar systems in the 

entrance hall of the train station in Mönchengladbach as well as at the public space at one of 

the entrances to the train station. 

We examine the sequence of range-Doppler maps as output of the radar modules. A detection 

and classification system based on neural networks uses the time sequence of these maps as 

input. For detection, we aim at a binary classification of scenes as either containing dangerous 

or violent activities or containing normal everyday situations. The detection of a dangerous or 

violent situation can be used in a later application to send an alarm to a central police station. 

Aiming at a more detailed analysis, we also investigate the classification of motion sequences 

as representing one of several characteristic scenarios, such as a person falling, two people 

hitting each other, or several people running away in a panic situation. To train the binary and 

the multi-class systems, we recorded radar data of motion sequences while playing dangerous 

or violent scenes with volunteers on the university campus or at a police training centre. Due to 

the need for a large amount of training data, we investigated approaches to artificially generate 

additional data from the captured radar data. This process is well known as data augmentation.  

A good overview of research in radar-based human activity recognition (HAR) is given in [2]. 

Range-Doppler maps are used as a basis for HAR, e.g., in [3], but also in other application areas 

such as hand gesture recognition [4] or drone detection [5]. The detection of falling people as a 

special HAR by analyzing Doppler maps is presented, e.g., in [6]. An overview of fall detection 
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approaches is given in [7]. Almost all studies on radar-based detection and recognition are based 

on the application of neural networks [8]. 

In the spring and summer of 2024, four sensor nodes were installed inside the train station and 

outside in the public space. Several thousand hours of radar data were collected until the end of 

2024. An overview of the system configuration used is given in the following section. The 

processes for acquisition and annotation of radar data are described. Augmentation methods are 

introduced to artificially generate further training data from the acquired data. We investigate 

different neural networks structures to detect and classify dangerous or violent activities in the 

captured scenes. Recognition results are presented. 
 

2. System Structure and Setup 

The project KIRaPol.5G [1] aims at the configuration shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Structure of the observation and detection system. 

 

We installed two sensor nodes in the entrance hall of the train station at a height of about 4 

meters, and two further sensor nodes outside the train station. The orientation of the first node 

inside the station was towards the entrance, while the second node covered the area of the station 

tunnel that travelers use to access the platforms. Outside the train station, the sensor nodes were 

installed on the roofs of two opposite buildings at heights of about 4 and 8 meters. The sensor 

signals from the two nodes inside and outside the train station were transmitted and stored on 

two separate local servers. Only one sensor node inside the station was connnected to its server 

by cable. All other nodes transmitted their data to the corresponding server via a private 5G 

cellular network. 

Each sensor node is composed of two radar modules. The two modules are positioned to cover 

different but slightly overlapping sectors of the observation area. Each sensor node inside the 

train station also contains two cameras. The field of view of these cameras is as close as possible 

to that of the radar modules. The video signals are recorded only for the purpose of annotating 

the captured radar data. Annotation includes the time information of individual scenes to define 

the sequence of range-Doppler maps needed for training individual classes. Outside the train 

station, we did not record video data because of a recommendation from the commissioner for 

data protection of the state of North Rhine-Westphalia. She argued that the university is not 

allowed to record video data in public places, even if it is only for research purposes and 

independent of any anonymization. 

The range-Doppler maps are calculated in each radar module. Further details of the module can 

be found in [9]. The data of the maps are transmitted to the servers and stored there. In a later 

application, the sequence of range-Doppler maps would be used as input for a detection and 

classification algorithm running on the local server. If a dangerous scene is detected, an alarm 
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signal would be sent to the police so that a police officer could turn on the corresponding camera 

and observe the scene. 

The size of the range-Doppler map is defined by a few parameters that can be set during 

initialization of the radar module. A single frequency ramp as part of the FMCW-based analysis 

covers a bandwidth of approximately 900 MHz. The number of range bins as one of the 

parameters is set to 512. However, we consider and transmit only 168 Doppler spectra covering 

the distance range between about 3 and 30 meters. Another parameter is the number of 

frequency ramps, which defines the size of the Doppler spectrum containing the corresponding 

number of velocity values. This number is set to 128. The time between two frequency ramps 

defines the velocity range covered by the Doppler spectrum. With respect to the expected 

velocity components in case of violent activities, we have chosen this third parameter so that 

the 128 Doppler bins cover the velocity range from about -6 m/s to +6 m/s. To avoid 

interferences between the two radar modules of a sensor node, a time delay is used to trigger 

the measurement and the calculation of the range-Doppler map in the second module. As a 

result of this parameterization, we can calculate 12.5 maps per second in each radar module. 

3. Data Acquisition and Augmentation 

The goal of the project is to detect dangerous or violent activities by analysing body movements. 

In this context we have focused on three scenarios:  

• A hurt or helpless person is falling. 

• A group of people is running away in a panic situation. 

• Two or more people, approaching and attacking each other. 

To train either a binary or a multi-class classification system, we need radar data for the 

dangerous or violent scenes. Compared to other areas of signal processing, such as speech or 

image processing, there are no publicly available databases with range Doppler maps for such 

activities. Therefore, we collected radar and video data on the university campus and at a police 

training centre. We used a single radar module and a single camera of the same type as the ones 

at the train station. The participants were instructed to behave and to move as they would in 

real scenarios containing such dangerous or violent activities. This is something that police 

officers do in a very realistic way as part of their training. Recently, we also played and recorded 

some dangerous scenes inside and outside the train station. In this way, we also collected a 

certain amount of data directly at the target locations of the project. We developed a tool based 

on a graphical user interface for the manual annotation of the radar data. The time information 

about the beginning and the end of a scene as well as the class assignment are stored in a label 

file. 

The effort to play dangerous and violent scenes with volunteers is high. On the other hand, as 

much radar data as possible is needed to reliably train a classification system based on neural 

networks. Therefore, we investigated the artificial generation of additional data from the 

recorded data. This is known as data augmentation. 

Two methods have been developed to generate additional data. The first method aims at shifting 

activities that occur in a certain distance range to larger distances. This avoids the effort of 

recording the same scene at several distances. Such activities cause components at the 

corresponding distance range in the range-Doppler map. When playing scenes on campus, the 

volunteers were active at 6 to 10 meters in front of the radar module. There were no other people 

or objects moving in the radar's field of view. We developed an algorithm to determine the 

distance range in the range-Doppler map where activity occurs. The Doppler spectra in this 

range are shifted to a greater distance. The amplitudes of each Doppler spectrum must be 

attenuated due to the shift to the greater distance. We estimated the attenuation factors using an 

empirical approach. A person carried a radar reflector and walked near the radar module from 
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a large distance while pointing the reflector at the module. We determined the maximum in 

each range-Doppler map during this movement. From the maximums of successive Doppler 

maps, we can estimate a characteristic for the attenuation that decreases for larger distances. 

Based on the attenuation characteristics we implemented the shifting of the Doppler spectra to 

a larger distance by a predefined number of meters. In this way, the training includes the 

occurrence of violent scenes at a greater distance, as may be the case at the train station. 

The second method is to consider additional people or other objects moving in the radar's field 

of view. Typically, many people who are not involved in the violent activity pass through the 

recording area. We developed a tool to overlay different parts of two range-Doppler maps. As 

mentioned before, we recorded the radar data for dangerous scenes where the volunteers moved 

at distances between 6 and 10 meters. In addition, we also recorded data where several people 

moved at larger distances in the background. The artificial creation of further sequences of 

range-Doppler maps is realized by randomly selecting a time segment of these background 

activities. The parts of the corresponding range-Doppler maps at larger distances are overlayed 

with the parts of the violent scene at smaller distances. 

4. Classification 

To classify a scene as containing dangerous or violent activities, we apply a neural network. 

The input to the neural network is the sequence of range-Doppler maps as shown in Figure 2. 

 

 

Figure 2.  Structure of applied processing. 

 

Range-Doppler maps are available from the radar module at a rate of 12,5 maps per second. By 

ignoring and erasing the three velocity components at and around 0 m/s, each map contains 168 

times 125 values. The logarithm of the velocity amplitudes is calculated. The logarithmic values 

of each map are normalized. The normalization of each map is done by subtracting the mean of 

all 168 times 125 logarithmic values. In addition, after subtracting the mean, the values are 

multiplied by a fixed factor so that the input to the network consists of values in the range of 

approximately -1 to +1. Fifty consecutive range-Doppler maps are used as input values to the 

network, so that the motion within a segment of 4s is classified. We use the term snippet for 

such a 4s segment. In the case of a single action, such as a person falling, we extract only a 

single snippet from the recordings for training. In case of a repeated action like boxing or 

punching, we extract multiple snippets for that scene with an overlap of 2s. 

We investigate two different neural networks structures. The first one combines a Resnet-18 

convolutional network (CNN) [10] with three LSTM layers (long short-term memory). The 

Resnet-18 has been developed in the field of image recognition. We use it to analyse the content 

of each range-Doppler map. The successive LSTM layers analyse the time sequence at which 

the range-Doppler maps occur. The second approach [11] has been developed to analyse the 

image sequence of a video. It uses a type of 3D convolution consisting of separate spatial and 
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temporal convolutions. The term "S3D" is used to describe this separable 3D CNN. In our case, 

we use the range-Doppler maps as input to the network instead of images. 

 

In a first experiment, we trained both network structures with about 5900 snippets. 2400 

snippets were extracted from the scenes recorded at the campus and at the police training center, 

or were artificially generated from the recorded data using data augmentation. The remaining 

3500 snippets were randomly extracted from radar data containing everyday scenes without 

dangerous or violent behavior. For testing, we used another set of 4750 snippets containing 

dangerous or violent activities or everyday scenes. The dangerous and violent scenes were also 

played and recorded on campus. Table 1 shows the accuracies and the F1 scores as percentages 

for both network structures and the binary and 5-class classification. The results are 

considerably better for the S3D structure. This was also observed in the later experiments, so 

we do not present further results for the ResNet structure. The binary distinction between 

dangerous and non-dangerous scenes works very well with percentages above 99%. 

 S3D ResNet18 & LSTM 

2 classes 5 classes 2 classes 5 classes 

Accuracy 99,4 99,2 94,1 97,1 

F1 99,3 96,5 93,4 79,8 

 

Table 1.  Accuracies and F1 scores for classification experiments with campus data. 

 

In a second experiment, we used a set of 7650 snippets for training. These snippets were 

extracted from all scenes played on campus and at police training centre or were created by data 

augmentation. We trained the S3D network twice, once including the augmented data and once 

without the augmented data. Another set of 306 snippets was used for testing. These snippets 

were extracted from dangerous or violent scenes played in front of one of the radar modules in 

the entrance hall of the train station. The results are shown in Table 2. The benefit of including 

augmented data in the training becomes clear. The performance is worse than in the first 

experiment due to the different recording environment. The entrance hall has other reflection 

properties. Furthermore, the high number of people moving through the entrance hall parallel 

to the played scene is the main reason for the loss.  

 with augmented data without augmented data 

2 classes 5 classes 5 classes 

Accuracy 91,8 92,7 85,9 

F1 91,6 73,5 69,4 

 

Table 2.  Scores for classification experiments on train station data, training without and with augmented data. 

 

Radar data recorded in the entrance hall with two different modules over several months were 

used for the third experiment focusing on binary classification. Assuming that no dangerous or 

violent activities occurred, all „dangerous” classifications would trigger a false alarm. False 

alarm rates are listed in Table 3 for sensor nodes SG_21 (towards the tunnel) and SG_31 

(towards the entrance). The data at node SG_21 consists of 2,236,000 snippets (~1240 hours) 

and at node SG_31 of 4,060,000 snippets (~2250 h). The results are presented for the separate 

classification of each indidivual snippet and after applying a postprocessing that includes an 

alarm detection only in case several consecutive probabilities at the corresponding output node 

of the neural network exceed a predefined threshold. The considerable gain becomes evident 

when the alarm detection is based on the analysis of several consecutive snippets. 
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 Sensor nodes 

SG_31 SG_21 

False alarm rate (individual snippet) 0,506 % 0,717 % 

False alarm rate (including postprocessing) 0,055 % 0,034 % 

 

Table 3.  False alarm rates without and with postprocessing for data recorded in the entrance hall 

By training the network with additional data recorded at sensor node SG_31 containing the 

characteristics at this location, the false alarm rate can be further reduced from 0,055% to 

0,023%. 

5. Important Remarks 

An approach is presented that enables the detection of violent scenes in public, based on the 

classification of sequences of range Doppler maps. The detection is performed by a neural 

network with a 3D convolutional structure consisting of separate spatial and temporal 

convolutions. The training of the classification system can be enhanced by artificially 

generating additional data from the captured radar data.  
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