Richtlinie zur Förderung von Kompetenzzentren zur automatisierten Analyse von Daten mittels Maschinellen Lernens im Rahmen des Förderprogramms "IKT 2020 – Forschung für Innovationen".

Die Analyse und Auswertung von großen Datenmengen ist eine der bedeutendsten Herausforderungen unserer Zeit. Einer der wichtigsten Technologiebausteine im Bereich der komplexen Datenanalysen stellt das Maschinelle Lernen (ML) dar. Das ML dient dazu, Muster in Daten zu erkennen oder Daten erst auf eine Weise zu segmentieren, die eine weitere Bearbeitung ermöglicht. Dabei kann ML nicht isoliert betrachtet werden, vielmehr ist es eingebettet in eine neue Wissenschaft der Datenanalyse, die das Lernen aus Beispielen mit Analysemethoden in Logik und Statistik verbindet.

 

Aus wissenschaftlicher wie technologischer Sicht wird die erfolgreiche Auswertung extrem großer Datenmengen als notwendiger Beitrag zur Bewältigung gesellschaftlicher Herausforderungen angesehen. Neue Anwendungsbereiche stellen das ML jedoch vor neue Herausforderungen. Diese Herausforderungen müssen adressiert werden, einerseits auf prinzipieller Ebene von induktiven Verfahren (u. a. Nachvollziehbarkeit, Validierbarkeit, Reproduzierbarkeit, Inter­determinismus) anderseits auch bei den Grenzen des ML (u. a. bei minimalen oder sehr großen Datenmengen, bei Lernen mit unsicheren Daten, bei exponentiell wachsendem Rechenaufwand). Weiterhin müssen Anforderungen verschiedener neuer Anwendungen hinsichtlich der Beweisbarkeit, Zuverlässigkeit, Zertifizierbarkeit und Transparenz untersucht ­werden. Große Herausforderungen und Potenziale ergeben sich auch für verschiedene Wissenschaftsdisziplinen, die sich mit einer immer größer werdenden Menge verwertbarer Daten für ihre Forschung konfrontiert sehen.

 

Weitere Informationen